首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface myoelectric signal changes occurring during sustained isometric contractions have been extensively studied with quantitative surface electromyography (sEMG) and are described by means of some sEMG global variables in time and frequency domain (such as the median power spectral frequency). Recently, the possibility of studying local muscle O2 saturation during exercise using non-invasive methods has been enhanced thanks to the use of near-infrared spectroscopy (NIRS). The purpose of this work was to combine NIRS and sEMG techniques to analyze the relationship between modifications of sEMG parameters and the underlying metabolic status of the exercising biceps brachii muscle. This relationship was tested under different isometric contraction modalities, namely static (ST) at 20, 40, 60 and 80%MVC and sinusoidal (SIN) at 40 ± 20 and 60 ± 20%MVC. Results clearly indicated the presence of an initial fast phase of muscle O2 desaturation followed by a slow phase, regardless of the contraction modality. Moreover, the initial rate of muscle O2 desaturation was related to the level of force output (R = 0.92), but it was independent on the contraction modality (p < 0.05). Similarly, changes in sEMG parameters were related to force level (Conduction Velocity-CV vs. Force: R = 0.87; sEMG Median Frequency-MDF vs. Force: R = 0.86). The high correlation found between CV-MDF and Tissue Oxygenation Index (TOI) slope (R = 0.73 and 0.72, respectively) suggests a strong relationship between NIRS and sEMG data. This study indicates that muscle O2 demand during isometric contractions from low to high force levels is influenced by the type of active motor units and not from the type of isometric exercise modality.  相似文献   

2.
Cardiopulmonary and skeletal muscle effects of combined aerobic and resistance training vs. aerobic training were studied in men with coronary heart disease. Sixteen men with coronary heart disease underwent a cardiopulmonary exercise testing and a quadriceps skeletal muscle fatigue assessment. Patients were divided into two groups and trained in a combined aerobic and resistance or aerobic training group during 7 weeks. Maximal voluntary contraction and isometric endurance time were measured with electromyographic signals recorded from vastus lateralis (VL), rectus femoris (RF) and vastus medialis (VM) during isometric endurance time. Exercise tolerance increased only in the combined group (p < 0.05). Maximal voluntary contraction and isometric endurance time did not change after training in either group but was performed at 5.8% higher force output for the combined group. After training, median frequency values were higher for the VL and VM (p < 0.001) in the aerobic group and also higher for the VL, RF (p < 0.001) and VM (p < 0.05) in the combined group. Combined aerobic and resistance training was more effective to improve exercise tolerance, decrease skeletal muscle fatigue and correct neuromuscular alterations in men with coronary heart disease.  相似文献   

3.
Motor unit behavior differs between contraction types at submaximal contraction levels, however is challenging to study during maximal voluntary contractions (MVCs). With multi-channel surface electromyography (sEMG), mean physiological characteristics of the active motor units can be extracted. Two 8-electrode sEMG arrays were attached on biceps brachii muscle (one on each head) to examine behavior of sEMG variables during isometric, eccentric and concentric MVCs of elbow flexors in 36 volunteers.On average, isometric (364 ± 88 N) and eccentric (353 ± 74 N) MVCs were higher than concentric (290 ± 73 N) MVC (p < 0.001). Mean muscle fiber conduction velocity (CV) was highest during eccentric MVC (4.42 ± 0.49 m/s) than concentric (4.25 ± 0.49 m/s, p < 0.01) and isometric (4.14 ± 0.45 m/s, p < 0.001) MVCs. Furthermore, eccentric MVC showed lower sEMG amplitude at the largest elbow joint angles (120–170°) and higher CV at the smallest (70–150°) elbow joint angles (p < 0.05–0.001) than concentric MVC.The differences in CV and sEMG amplitude between the MVCs suggest that the control strategy of motor units differs between the contraction types during MVCs, and is dependent on the muscle length between the dynamic MVCs.  相似文献   

4.
A relationship exists between muscles of the lumbar spine and those of the lower extremity where the quadriceps become more inhibited after lumbar paraspinal. The purpose of this experiment was to compare surface electromyography (sEMG) total frequency content after lumbar paraspinal fatiguing exercise. Scope: 50 subjects performed fatiguing lumbar extension exercise indexed by downward shifts in median frequency calculated from lumbar paraspinal sEMG signal. Before and after each exercise set we recorded maximal, isometric knee extension torque and quadriceps central activation ratio (QI) using the superimposed burst technique while recording vastus lateralis sEMG. We calculated total frequency content of the sEMG signal (fEMGTOTAL) as the area of the quadriceps sEMG frequency spectrum. Quadriceps fEMGTOTAL decreased from baseline following the first and second exercise sets. There was no significant change in quadriceps sEMG median frequency among baseline and post-exercise measures. The change in fEMGTOTAL was correlated with the change in QI following the first (r = ?0.41, P = 0.003) and second (r = ?0.32, P = 0.02) exercise sets. Conclusion: Quadriceps fEMGTOTAL decreased following fatiguing lumbar extension exercise, in the absence of a significant change in quadriceps median frequency.  相似文献   

5.
This study aimed to explore changes in the electrical activity distribution among synergist muscles involved in the maintenance of this bilateral multi-joint task. It also tested relations between changes in surface electromyographic (sEMG) parameters with endurance time. Eighteen subjects, trained and untrained in hiking, performed a submaximal (50% of maximal contraction) isometric hiking test until exhaustion. The electrical activity of main superficial muscles implicated in this posture was recorded bilaterally. Trained subjects sustained the hiking position for 315 ± 82 s, versus 225 ± 68 s for untrained subjects. Patterns of electrical activity and mean power frequency (MPF) were different between populations. MPF shift in abdominal muscles was higher than in other synergists for both groups. Although typical changes in sEMG parameters were observed, few relations with endurance time were found, and for untrained subjects only. Changes in the relative contribution among synergists were observed, mainly for trained subjects. It is hypothesized that the task (a complex multi-joint posture involving numerous joints and muscles) may allow some variability in the contribution of synergist muscles during fatigue especially for the trained group. This probably explains the absence of relationship between endurance time and sEMG changes for trained subjects.  相似文献   

6.
In surface electromyography (sEMG), the distribution of motor unit potential (MUP) velocities has been shown to reflect the proportion of faster and slower propagating MUPs. This study investigated whether the distribution of MUP velocities could distinguish between sprinters (n = 11) and endurance athletes (n = 12) in not-specifically trained muscle (biceps brachii) during prolonged dynamic exercises at low forces. sEMG was acquired during 4 min’ exercises: unloaded, 5%, 10% and 20% of maximal voluntary contraction (MVC). The features extracted from the sEMG were: the mean muscle conduction velocity – estimated using the inter-peak latency and cross-correlation methods, the within-subject skewness (expressing the proportions of faster and slower propagating MUPs) and the within-subject standard deviation of MUP velocities (SD-mup). Sprinters showed a greater proportion of faster propagating MUPs than endurance athletes. During fatigue, the SD-mup of sprinters broadened progressively, whereas that of endurance athletes did not. The findings suggest that sprinters conveyed a greater proportion of faster motor units than endurance athletes and that motor unit behavior during fatigue differed between groups. Thus, the distribution of MUP velocities enables distinction between a muscle of sprinters and endurance athletes during prolonged dynamic exercises at low forces.  相似文献   

7.
The aim of the present study was to assess the time course and the origin of adaptations in neuromuscular function as a consequence of prolonged bed rest with or without countermeasure. Twenty healthy males volunteered to participate in the present study and were randomly assigned to either an inactive control group (Ctrl) or to a resistive vibration exercise (RVE) group. Prior to, and seven times during bed rest, we recorded high-density surface electromyogram (sEMG) signals from the vastus lateralis muscle during isometric knee extension exercise at a range of contraction intensities (5–100% of maximal voluntary isometric torque). The high-density sEMG signals were analyzed for amplitude (root mean square, RMS), frequency content (median frequency, Fmed) and muscle fiber conduction velocity (MFCV) in an attempt to describe bed rest-induced changes in neural activation properties at the levels of the motor control and muscle fibers. Without countermeasures, bed rest resulted in a significant progressive decline in maximal isometric knee extension strength, whereas RMS remained unaltered throughout the bed rest period. In line with observed muscle atrophy, both Fmed and MFCV declined during bed rest. RVE training during bed rest resulted in maintained maximal isometric knee extension strength, and a strong increase (~30%) in maximal EMG amplitude, from 10 days of bed rest on. Exclusion of other factors led to the conclusion that the RVE training increased motor unit firing rates as a consequence of an increased excitability of motor neurons. An increased firing rate might have been essential under training sessions, but it did not affect isometric voluntary torque capacity.  相似文献   

8.
The aim of the present study was to determine whether any specific frequency bands of surface electromyographic (sEMG) signals are more susceptible to alterations in patients with temporomandibular disorders (TMD), when compared with healthy subjects. Twenty-seven healthy adults (19 women and eight men; mean age: 23 ± 6.68 years) and 27 TMD patients (20 women and seven men; mean age: 24 ± 5.89 years) voluntarily participated in the experiment. sEMG data were recorded from the right and left masseter muscles (RM and LM) and the right and left anterior temporalis muscles (RT and LT) as the participants performed tests of chewing (CHW) and maximal clenching effort (MCE). Frequency domain analysis of the sEMG signal was used to analyze differences between TMD patients and healthy subjects in relation to the Power Spectral Density Function (PSDF). The analysis focused on the median frequency (MDF) of the sEMG signal and PSDF frequency bands after the EMG spectrum was divided into twenty-five frequency band of 20 Hz each. The Mann-Whitney test was used to compare MDF between TMD patients and healthy subjects and the frequency bands were analyzed using three-way ANOVA with three factors: frequency band, muscle and group. The results of the analysis confirmed that the median frequency values in TMD patients were significantly higher (p < 0.05) than those recorded for healthy subjects in the two experimental conditions (MCE and CHW), for all of the muscles assessed (RM, LM, RT and LT). In addition, frequency content between 20 and 100 Hz of the normalized PSDF range was significantly lower (p < 0.05) in TMD patients than in healthy. This study contributes to quantitatively identify TMD dysfunctions, by non-invasive sEMGs; this assessment is clinically important and still lacking nowadays.  相似文献   

9.
Experiments were carried out to examine whether innervation zone (IZ) location remains stable at different levels of isometric contraction in the biceps brachii muscle (BB), and to determine how the proximity of the IZ affects common surface electromyography (sEMG) parameters. Twelve subjects performed maximal (MVC) and submaximal voluntary isometric contractions at 10%, 20%, 30%, 40%, 50% and 75% of MVC. sEMG signals were recorded with a 13 rows × 5 columns grid of electrodes from the short head of BB. The IZ shifted in the proximal direction by up to 2.4 cm, depending upon the subject and electrode column. The mean shift of all the columns was 0.6 ± 0.4 cm (10% vs. 100% MVC, P < 0.001). This shift biased the average values of mean frequency (+21.8 ± 9.9 Hz, P < 0.001), root mean square (?0.16 ± 0.15 mV, P < 0.05) and conduction velocity (?1.15 ± 0.93 m/s, P < 0.01) in the channels immediately proximal to the IZ. The shift in IZ could be explained by shortening of the muscle fibers, and thus lengthening of the (distal) tendon due to increasing force. These results underline the importance of individual investigation of IZ locations before the placement of sEMG electrodes, even in isometric contractions.  相似文献   

10.
Mechanical assistance on joint movement is generally beneficial; however, its effects on cooperative performance and muscle activity needs to be further explored. This study examined how motor performance and muscle activity are altered when mechanical assistance is provided during isometric force control of ramp-down and hold phases. Thirteen right-handed participants (age: 24.7 ± 1.8 years) performed trajectory tracking tasks. Participants were asked to maintain the reference magnitude of 47 N (REF) during isometric elbow flexion. The force was released to a step-down magnitude of either 75% REF or 50% REF and maintained, with and without mechanical assistance. The ramp-down durations of force release were set to 0.5, 2.5, or 5.0 s. Throughout the experiment, we measured the following: (1) the force output using load cells to compute force variability and overshoot ratio; (2) peak perturbation on the elbow movement using an accelerometer; (3) the surface electromyography (sEMG) from biceps brachii and triceps brachii muscles; and (4) EMG oscillation from the biceps brachii muscle in the bandwidth of 15–45 Hz. Our results indicated that mechanical assistance, which involved greater peak perturbation, demonstrated lower force variability than non-assistance (p < 0.01), while EMG oscillation in the biceps brachii muscle from 15 to 45 Hz was increased (p < 0.05). These findings imply that if assistive force is provided during isometric force control, the central nervous system actively tries to stabilize motor performance by controlling specific motor unit activity in the agonist muscle.  相似文献   

11.
This study investigated the effects of age on upper erector spinae (UES), lower erector spinae (LES) and lower body (gluteus maximus; biceps femoris; and vastus lateralis) muscle activity during a repetitive lifting task. Twenty-four participants were assigned to two age groups: ‘younger’ (n = 12; mean age ± SD = 24.6 ± 3.6 yrs) and ‘older’ (n = 12; mean age = 46.5 ± 3.0 yrs). Participants lifted and lowered a box (13 kg) repetitively at a frequency of 10 lifts per minute for a maximum of 20 min. EMG signals were collected every minute and normalised to a maximum voluntary isometric contraction. A submaximal endurance test of UES and LES was used to assess fatigue. Older participants showed higher levels of UES and LES muscle activity (approximately 12–13%) throughout the task, but less fatigue compared to the younger group post-task completion. When lifting, lower-limb muscle activity was generally higher in older adults, although temporal changes were similar. While increased paraspinal muscle activity may increase the risk of back injury in older workers when repetitive lifting, younger workers may be more susceptible to fatigue-related effects. Education and training in manual materials handling should consider age-related differences when developing training programmes.  相似文献   

12.
目的:探讨肌肉疲劳过程中sEMG功率谱变化与H 的关系以及可能存在的其它影响因素.方法:利用肌肉进行疲劳收缩结束后,短时间内肌肉pH值尚无明显改变的特性,观察恢复期30 s内s EMG功率谱的变化规律.八名男性受试者,以肱二头肌为目标肌肉,负荷强度为60%MVC,静态持续负荷至疲劳点后,在恢复期以同样负荷分别观察2 s、4 s、6 s、8 s、10 s、20 s、30 s时的sEMG信号特征.结果:肱二头肌在以60%MVC静态疲劳负荷过程中MPF呈线性下降.在疲劳负荷后的恢复期,MPF恢复极其迅速,运动结束后仅2 s,MPF已恢复到整个下降范围的26.5%;至30 s,MPF已恢复到整个下降范围的87.7%.结论:由[H ]增加引起的肌纤维动作电位传导速度下降不是决定sEMG功率谱左移的唯一因素,提示sEMG功率谱左移可能与神经源性的中枢机制的作用有关.  相似文献   

13.
In surface electromyography (sEMG), the distribution of motor unit potential (MUP) velocities has been shown to reflect the proportion of faster and slower propagating MUPs. This study investigated whether the distribution of MUP velocities could distinguish between sprinters and endurance athletes in not-specifically trained muscle (biceps brachii). sEMG results were acquired from 15 sprinters and 18 endurance athletes during short static contractions (3.8 s) at three force levels: unloaded, 10% and 20% of maximum voluntary contraction. The features extracted from the sEMG were: the mean muscle conduction velocity (CV) – estimated using the inter-peak latency and the cross-correlation methods, the within-subject skewness of MUP velocities (expressing the relative proportions of faster and slower propagating MUPs), and the within-subject standard deviation of MUP velocities. Sprinters had a higher CV than endurance athletes using both methods. Sprinters also demonstrated a greater proportion of fast propagating MUPs, as indicated by the skewness. Thus, the distribution of MUP velocities was able to demonstrate physiological differences between sprinters and endurance athletes during short contractions at low forces. The findings can be extrapolated to the motor unit level. Since the investigated muscle was not involved in specific training, the differences seem to reflect inherited properties.  相似文献   

14.
Natural variability of myoelectric activity during walking was recently analyzed considering hundreds of strides. This allowed assessing a parameter seldom considered in classic surface EMG (sEMG) studies: the occurrence frequency, defined as the frequency each muscle activation occurs with, quantified by the number of strides when a muscle is recruited with that specific activation modality. Aim of present study was to propose the occurrence frequency as a new parameter for assessing sEMG-signal variability during walking. Aim was addressed by processing sEMG signals acquired from Gastrocnemius Lateralis, Tibialis Anterior, Rectus Femoris and Biceps femoris in 40 healthy subjects in order to: (1) show that occurrence frequency is not correlated with ON/OFF instants (Rmean = 0.11 ± 0.07; P > 0.05) and total time of activation (Rmean = 0.15 ± 0.08; P > 0.05); (2) confirm the above results by two handy examples of application (analysis of gender and age) which highlighted that significant (P < 0.05) gender-related and age-related differences within population were detected in occurrence frequency, but not in temporal sEMG parameters. In conclusion, present study demonstrated that occurrence frequency is able to provide further information, besides those supplied by classical temporal sEMG parameters and thus it is suitable to complement them in the evaluation of variability of myoelectric activity during walking.  相似文献   

15.
Purpose: To verify the precision of surface electromyography (sEMG) in locating the innervation zone of the gracilis muscle, by comparing the location of the IZ estimated by means of sEMG with in vivo location of the nerve bundle entry point in patients before graciloplasty procedure due to fecal incontinence. Methods: Nine patients who qualified for the graciloplasty procedure underwent sEMG on both gracilis muscle before their operations. During surgery the nerve bundle was identified by means of electrical stimulation. The distance between the proximal attachment and the nerve entry point into the muscle’s body was measured. Both measurements (sEMG and in vivo identification) were compared for each subject. Results: On average, the IZ was located 65.5 mm from the proximal attachment. The mean difference in location of the innervation zones in each individual was 10 ± 9.7 mm, maximal – 30 mm, the difference being statistically significant (p = 0.017). It was intraoperatively confirmed, that the nerve entered the muscle an average of 62 mm from the proximal attachment. The largest difference between the EMG IZ estimation and nerve bundle entry point was 5 mm (mean difference 2.8 mm, p = 0.767). Conclusion: Preoperative surface electromyography of both gracilis muscles is a safe, precise and reliable method of assessing the location of the innervation zones of the gracilis muscles. The asymmetry of the IZ location in left and right muscles may be important in context of technical aspects of the graciloplasty procedure.  相似文献   

16.
Muscle fibre conduction velocity (MFCV) is a basic physiological parameter biophysically related to the diameter of muscle fibres and properties of the sarcolemma. The aim of this study was to assess the intersession reproducibility of the relation between voluntary force and estimates of average muscle fibre conduction velocity (MFCV) from multichannel high-density surface electromyographic recordings (HDsEMG). Ten healthy men performed six linearly increasing isometric ankle dorsiflexions on two separate experimental sessions, 4 weeks apart. Each session involved the recordings of voluntary force during maximal isometric (MViF) and submaximal ramp contractions at 35–50–70% of MViF. Concurrently, the HDsEMG activity was detected from the tibialis anterior muscle and MFCV estimates were derived in 250-ms epochs. Absolute and relative reproducibility of MFCV initial value (intercept) and rate of change (regression slope) as a function of force were assessed by within-subject coefficient of correlation (CVw) and with intraclass correlation coefficient (ICC). MFCV was positively correlated with voluntary force (R2 = 0.75 ± 0.12) in all individuals and test conditions (P < 0.001). Average CVw for MFCV intercept and slope were of 2.6 ± 2.0% and 11.9 ± 3.2% and ICC values of 0.96 and 0.94, respectively.Overall, MFCV regression coefficients showed a high degree of intersession reproducibility in both absolute and relative terms. These results may have important practical implications in the tracking of training-induced neuromuscular changes and/or in the monitoring of the progress of neuromuscular disorders when a full sEMG signal decomposition is problematic or not possible.  相似文献   

17.
This study compared the effects of 6-week whole-body vibration (WBV) training programs with different frequency and peak-to-peak displacement settings on knee extensor muscle strength and power. The underlying mechanisms of the expected gains were also investigated. Thirty-two physically active male subjects were randomly assigned to a high-frequency/high peak-to-peak displacement group (HH; n = 12), a low-frequency/low peak-to-peak displacement group (LL; n = 10) or a sham training group (SHAM; n = 10). Maximal voluntary isometric, concentric and eccentric torque of the knee extensors, maximal voluntary isometric torque of the knee flexors, jump performance, voluntary muscle activation, and contractile properties of the knee extensors were assessed before and after the training period. Significant improvement in knee extensor eccentric voluntary torque (P < 0.01), knee flexor isometric voluntary torque (P < 0.05), and jump performance (P < 0.05) was observed only for HH group. Regardless of the group, knee extensor muscle contractile properties (P < 0.05) were enhanced. No modification was observed for voluntary muscle activation or electrical activity of agonist and antagonist muscles. We concluded that high-frequency/high peak-to-peak displacement was the most effective vibration setting to enhance knee extensor muscle strength and jump performance during a 6-week WBV training program and that these improvements were not mediated by central neural adaptations.  相似文献   

18.
PurposePrevious studies have suggested that muscle coactivation could be reduced by a recurrent activity (training, daily activities). If this was correct, skilled athletes should show a specific muscle activation pattern with a low level of coactivation of muscles which are typically involved in their discipline. In particular, the aim of this study was to verify the hypothesis that the amount of antagonist activation of biceps brachii (BB) and triceps brachii (TB) is different between tennis players and non-players individuals during maximal isokinetic contractions.MethodsTen young healthy men and eight male tennis players participated in the study. The surface electromyographic signals (sEMG) were recorded from the BB and TB muscles during three maximal voluntary isometric contractions (MVC) of elbow flexors and extensors and a set of three maximal elbow flexions and extensions at 15°, 30°, 60°, 120°, 180° and 240°/s. Normalized root mean square (RMS) of sEMG was calculated as an index of sEMG amplitude.ResultsAntagonist activation (%RMSmax) of TB was significantly lower in tennis players (from 14.0 ± 7.9% at MVC to 16.3 ± 8.9% at 240°/s) with respect to non-players (from 27.7 ± 19.7% at MVC to 38.7 ± 17.6% at 240°/s) at all angular velocities. Contrary to non-players, tennis players did not show any difference in antagonist activation between BB and TB muscles.ConclusionsTennis players, with a constant practice in controlling forces around the elbow joint, learn how to reduce coactivation of muscles involved in the control of this joint. This has been shown by the lower antagonist muscular activity of triceps brachii muscle during isokinetic elbow flexion found in tennis players with respect to non-players.  相似文献   

19.
The physiological behavior of the abductor pollicis brevis (APB) muscle during early stage of fatigue is important as a reference for future clinical assessment of a pathologically altered muscle, as e.g. in carpal tunnel syndrome. The purpose of this study was to assess changes of force and surface electromyograms (sEMG) during early stage of fatigue of the APB. Thumb abduction force and sEMG derived from a multi-electrode array were recorded during isometric contraction. Electrode placement over the innervation zone (IZ) and the muscle tendon interface were avoided. The sEMGs of two adjacent electrode pairs were selected for the analysis, which yielded (a) motor unit conduction velocities (MUCV) derived from a correlation analysis between the EMGs and (b) mean frequencies obtained by using either fast Fourier (FMF) or Wavelet Transform (WMF). Early fatigue resulted in a relative decay rate of force (?2.1%1 s?1), MUCV (?1.5%1 s?1), FMF (?4.1%1 s?1), WMF (?3.7%1 s?1) and in a change of the power spectrum shape. Lower mean frequencies were observed at greater distances from the IZ independently of fatigue. The APB muscle seems to be fast fatigable and the relative decay rate of mean frequency was significantly larger than the one of force and MUCV.  相似文献   

20.
This study investigated (a) the feasibility and repeatability of intramuscular fine-wire electromyographic (fEMG) recordings from leg muscles during the repetitive, high-velocity cycling movement, (b) the influence of amplitude normalization technique on repeatability and statistical sensitivity, (c) the influence of test-retest interval duration on repeatability, and (d) differences between fEMG and surface EMG (sEMG) recordings of cycling. EMG activity of leg muscles was recorded using surface and fine-wire electrodes during one (n = 12, to investigate statistical sensitivity and compare sEMG and fEMG) or two sessions (T1 and T2, 5–20 days apart, n = 10, to investigate repeatability). fEMG recordings were feasible and there was high repeatability of fEMG recordings normalised to maximum measured EMG amplitude (MAX); mean coefficients of multiple correlation (CMC) ranged from .83 ± .13 to .88 ± .07. Data normalised to maximal (MVC) or submaximal contractions (sMVC) were less repeatable (p < .01). Statistical sensitivity was also greatest for data normalised to MAX (p < .01). Repeatability of fEMG increased with greater test-retest intervals (p < .01). The global pattern of muscle recruitment was consistent between sEMG and fEMG but sEMG recordings were characterized by additional myoelectric content. These findings support and guide the use of fEMG techniques to investigate leg muscle recruitment during cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号