首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PurposeThis study evaluated the plan quality of CyberKnife MLC-based treatment planning in comparison to the Iris collimator for abdominal and pelvic SBRT. Multiple dosimetric parameters were considered together with a global scoring index validated by clinical scoring.Methods and materialsIris and MLC plans were created for 28 liver, 15 pancreas and 13 prostate cases including a wide range of PTV sizes (24–643 cm3). Plans were compared in terms of coverage, conformity (nCI), dose gradient (R50%), homogeneity (HI), OAR doses, PTV gEUD, MU, treatment time both estimated by TPS (tTPS) and measured. A global plan quality score index was calculated for IRIS and MLC solutions and validated by a clinical score given independently by two observers.ResultsCompared to Iris, MLC achieved equivalent coverage and conformity without compromising OAR sparing and improving R50% (p < 0.001). MLC gEUD was slightly lower than Iris (p < 0.05) for abdominal cases. MLC reduced significantly MU (−15%) and tTPS (−22%). Time reduction was partially lost when measured. The global score index was significantly higher for MLC solutions which were selected in 73% and 64% of cases respectively by the first and second observer.ConclusionIris and MLC comparison was not straightforward when based on multiple dosimetric parameters. The use of a mathematical overall score index integrated with a clinical scoring was essential to confirm MLC plans advantages over Iris solutions.  相似文献   

2.
3.
PurposeStereotactic body image guided radiation therapy (SBRT) shows good results for lung cancer treatment. Better normal tissue sparing might be achieved with scanned carbon ion therapy (PT). Therefore an in silico trial was conducted to find potential advantages of and patients suited for PT.MethodsFor 19 patients treated with SBRT, PT plans were calculated on 4D-CTs with simulated breathing motion. Prescribed single fraction dose was 24 Gy and OAR constraints used for photon planning were respected. Motion was mitigated by rescanning and range-adapted ITVs. Doses were compared to the original SBRT plans.ResultsCTV coverage was the same in SBRT and PT. The field-specific PTV including range margins for PT was 1.5 (median, 25–75% 1.3–2.1) times larger than for SBRT. Nevertheless, maximum point dose and mean dose in OARs were higher in SBRT by 2.8 (1.6–3.7) Gy and 0.7 (0.3–1.6) Gy, respectively. Patients with a CTV >2.5 cc or with multiple lung lesions showed larger differences in OAR doses in favor of PT.ConclusionsPatients receive less dose in critical OARs such as heart, spinal cord, esophagus, trachea and aorta with PT, while maintaining the same target coverage. Patients with multiple or larger lesions are particularly suited for PT.  相似文献   

4.
AimThe aim is a dosimetric comparison of dynamic conformal arc integrated with the segment shape optimization and variable dose rate (DCA_SSO_VDR) versus VMAT for liver SBRT and interaction of various treatment plan quality indices with PTV and degree of modulation (DoM) for both techniques.BackgroundThe DCA is the state-of-the-art technique but overall inferior to VMAT, and the DCA_SSO_VDR technique was not studied for liver SBRT.Materials and methodsTwenty-five patients of liver SBRT treated using the VMAT technique were selected. DCA_SSO_VDR treatment plans were also generated for all patients in Monaco TPS using the same objective constraint template and treatment planning parameters as used for the VMAT technique. For comparison purpose, organs at risk (OARs) doses and treatment plans quality indices, such as maximum dose of PTV (Dmax%), mean dose of PTV (Dmean%), maximum dose at 2 cm in any direction from the PTV (D2cm%), total monitor units (MU’s), gradient index R50%, degree of modulation (DoM), conformity index (CI), homogeneity index (HI), and healthy tissue mean dose (HTMD) were compared.ResultsSignificant dosimetric differences were observed in several OARs doses and lowered in VMAT plans. The D2cm%, R50%, CI, HI and HTMD are dosimetrically inferior in DCA_SSO_VDR plans. The higher DoM results in poor dose gradient and better dose gradient for DCA_SSO_VDR and VMAT treatment plans, respectively.ConclusionsFor liver SBRT, DCA_SSO_VDR treatment plans are neither dosimetrically superior nor better alternative to the VMAT delivery technique. A reduction of 69.75% MU was observed in DCA_SSO_VDR treatment plans. For the large size of PTV and high DoM, DCA_SSO_VDR treatment plans result in poorer quality.  相似文献   

5.
PurposeTo evaluate the planning feasibility of dose-escalated total marrow irradiation (TMI) with simultaneous integrated boost (SIB) to the active bone marrow (ABM) using volumetric modulated arc therapy (VMAT), and to assess the impact of using planning organs at risk (OAR) volumes (PRV) accounting for breathing motion in the optimization.MethodsFive patients underwent whole-body CT and thoraco-abdominal 4DCT. A planning target volume (PTV) including all bones and ABM was contoured on each whole-body CT. PRV of selected OAR (liver, heart, kidneys, lungs, spleen, stomach) were determined with 4DCT. Planning consisted of 9–10 full 6 MV photon VMAT arcs. Four plans were created for each patient with 12 Gy prescribed to the PTV, with or without an additional 4 Gy SIB to the ABM. Planning dose constraints were set on the OAR or on the PRV. Planning objective was a PTV Dmean < 110% of the prescribed dose, a PTV V110% < 50%, and OAR Dmean ≤ 50–60%.ResultsPTV Dmean < 110% was accomplished for most plans (n = 18/20), while all achieved V110%<50%. SIB plans succeeded to optimally cover the boost volume (median ABM Dmean = 16.3 Gy) and resulted in similar OAR sparing compared to plans without SIB (median OAR Dmean = 40–54% of the ABM prescribed dose). No statistically significant differences between plans optimized with constraints on OAR or PRV were found.ConclusionsAdding a 4 Gy SIB to the ABM for TMI is feasible with VMAT technique, and results in OAR sparing similar to plans without SIB. Setting dose constraints on PRV does not impair PTV dosimetric parameters.  相似文献   

6.
PurposeVentricular tachycardia (VT) is a life-threatening heart disorder. The aim of this preliminary study is to assess the feasibility of stereotactic body radiation therapy (SBRT) photon and proton therapy (PT) plans for the treatment of VT, adopting robust optimization technique for both irradiation techniques.MethodsECG gated CT images (in breath hold) were acquired for one patient. Conventional planning target volume (PTV) and robust optimized plans (25GyE in single fraction) were simulated for both photon (IMRT, 5 and 9 beams) and proton (SFO, 2 beams) plans. Robust optimized plans were obtained both for protons and photons considering in the optimization setup errors (5 mm in the three orthogonal directions), range (±3.5%) and the clinical target volume (CTV) motion due to heartbeat and breath-hold variability.ResultsThe photon robust optimization method, compared to PTV-based plans, showed a reduction in the average dose to the heart by about 25%; robust optimization allowed also reducing the mean dose to the left lung from 3.4. to 2.8 Gy for 9-beams configuration and from 4.1 to 2.9 Gy for 5-beams configuration. Robust optimization with protons, allowed further reducing the OAR doses: average dose to the heart and to the left lung decreased from 7.3 Gy to 5.2 GyE and from 2.9 Gy to 2.2 GyE, respectively.ConclusionsOur study demonstrates the importance of the optimization technique adopted in the treatment planning system for VT treatment. It has been shown that robust optimization can significantly reduce the dose to healthy cardiac tissues and that PT further increases this gain.  相似文献   

7.
PurposeEvaluating performance of modern dose calculation algorithms in SBRT and locally advanced lung cancer radiotherapy in free breathing (FB) and deep inspiration breath hold (DIBH).MethodsFor 17 patients with early stage and 17 with locally advanced lung cancer, a plan in FB and in DIBH were generated with Anisotropic Analytical Algorithm (AAA). Plans for early stage were 3D-conformal SBRT, 45 Gy in 3 fractions, prescribed to 95% isodose covering 95% of PTV and aiming for 140% dose centrally in the tumour. Locally advanced plans were volumetric modulated arc therapy, 66 Gy in 33 fractions, prescribed to mean PTV dose. Calculation grid size was 1 mm for SBRT and 2.5 mm for locally advanced plans. All plans were recalculated with AcurosXB with same MU as in AAA, for comparison on target coverage and dose to risk organs.ResultsLung volume increased in DIBH, resulting in decreased lung density (6% for early and 13% for locally-advanced group).In SBRT, AAA overestimated mean and near-minimum PTV dose (p-values < 0.01) compared to AcurosXB, with largest impact in DIBH (differences of up to 11 Gy). These clinically relevant differences may be a combination of small targets and large dose gradients within the PTV.In locally advanced group, AAA overestimated mean GTV, CTV and PTV doses by median less than 0.8 Gy and near-minimum doses by median 0.4–2.7 Gy.No clinically meaningful difference was observed for lung and heart dose metrics between the algorithms, for both FB and DIBH.ConclusionsAAA overestimated target coverage compared to AcurosXB, especially in DIBH for SBRT.  相似文献   

8.
Purpose/objectiveThe objective of this study was to verify the accuracy of treatment plans of stereotactic body radiation therapy (SBRT) and to verify the feasibility of the use of Monte Carlo (MC) as quality control (QC) on a daily basis.Material/methodsUsing EGSnrc, a MC model of Agility™ linear accelerator was created. Various measurements (Percentage depth dose (PDD), Profiles and Output factors) were done for different fields sizes from 1x1 up to 40x40 (cm2). An iterative model optimization was performed to achieve adequate parameters of MC simulation. 40 SBRT patient’s dosimetry plans were calculated by Monaco™ 3.1.1. CT images, RT-STRUCT and RT-PLAN files from Monaco™ being used as input for Moderato MC code. Finally, dose volume histogram (DVH) and paired t-tests for each contour were used for dosimetry comparison of the Monaco™ and MC.ResultsValidation of MC model was successful, as <2% difference comparing to measurements for all field’s sizes. The main energy of electron source incident on the target was 5.8 MeV, and the full width at half maximum (FWHM) of Gaussian electron source were 0.09 and 0.2 (cm) in X and Y directions, respectively. For 40 treatment plan comparisons, the minimum absolute difference of mean dose of planning treatment planning (PTV) was 0.1% while the maximum was 6.3%. The minimum absolute difference of Max dose of PTV was 0.2% while the maximum was 8.1%.ConclusionSBRT treatment plans of Monaco agreed with MC results. It possible to use MC for treatment plans verifications as independent QC tool.  相似文献   

9.
AimTo assess a class solution template for volumetric-modulated arc therapy (VMAT) for prostate cancer using plan analysis software.BackgroundVMAT is a development of intensity-modulated radiotherapy (IMRT) with potential advantages for the delivery of radiotherapy (RT) in prostate cancer. Class solutions are increasingly used for facilitating RT planning. Plan analysis software provides an objective tool for evaluating class solutions.Materials and methodsThe class solution for VMAT was based on the current static field IMRT template. The plans of 77 prostate cancer patients were evaluated using a set of in-house plan quality metrics (scores) (PlanIQ™, Sun Nuclear Corporation). The metrics compared the class solution for VMAT planning with the IMRT template and the delivered clinical plan (CP). Eight metrics were associated with target coverage and ten with organs-at-risk (OAR). Individual metrics were summed and the combined scores were subjected to non-parametric analysis. The low-dose wash for both static IMRT and VMAT plans were evaluated using 40 Gy and 25 Gy isodose volumes.ResultsVMAT plans were of equal or better quality than the IMRT template and CP for target coverage (combined score) and OAR combined score. The 40 Gy isodose volume was marginally higher with VMAT than IMRT (4.9%) but lower than CP (−6.6%)(P = 0.0074). The 25 Gy volume was significantly lower with VMAT than both IMRT (−32.7%) and CP (−34.4%)(P < 0.00001).ConclusionsAutomated VMAT planning for prostate cancer is feasible and the plans are equal to or better than the current IMRT class solution and the delivered clinical plan.  相似文献   

10.
IntroductionThe stereotactic irradiation is a new approach for low-risk prostate cancer. The aim of the present study was to evaluate a schema of stereotactic irradiation of the prostate with an integrated-boost into the tumor.Material and methodsThe prostate and the tumor were delineated by a radiologist on CT/MRI fusion. A 9-coplanar fields IMRT plan was optimized with three different dose levels: 1) 5 × 6.5 Gy to the PTV1 (plan 1), 2) 5 × 8 Gy to the PTV1 (plan 2) and 3) 5 × 6.5 Gy on the PTV1 with 5 × 8 Gy on the PTV2 (plan 3). The maximum dose (MaxD), mean dose (MD) and doses received by 2% (D2), 5% (D5), 10% (D10) and 25% (D25) of the rectum and bladder walls were used to compare the 3 IMRT plans.ResultsA dose escalation to entire prostate from 6.5 Gy to 8 Gy increased the rectum MD, MaxD, D2, D5, D10 and D25 by 3.75 Gy, 8.42 Gy, 7.88 Gy, 7.36 Gy, 6.67 Gy and 5.54 Gy. Similar results were observed for the bladder with 1.72 Gy, 8.28 Gy, 7.01 Gy, 5.69 Gy, 4.36 Gy and 2.42 Gy for the same dosimetric parameters. An integrated SBRT boost only to PTV2 reduced by about 50% the dose difference for rectum and bladder compared to a homogenous prostate dose escalation. Thereby, the MD, D2, D5, D10 and D25 for rectum were increased by 1.51 Gy, 4.24 Gy, 3.08 Gy, 2.84 Gy and 2.37 Gy in plan 3 compared to plan 1.ConclusionsThe present planning study of an integrated SBRT boost limits the doses received by the rectum and bladder if compared to a whole prostate dose escalation for SBRT approach.  相似文献   

11.
PurposeWe investigated the feasibility of robust optimization for volumetric modulated arc therapy (VMAT) stereotactic body radiation therapy (SBRT) for liver cancer in comparison with planning target volume (PTV)-based optimized plans. Treatment plan quality, robustness, complexity, and accuracy of dose delivery were assessed.MethodsTen liver cancer patients were selected for this study. PTV-based optimized plans with an 8-mm PTV margin and robust optimized plans with an 8-mm setup uncertainty were generated. Plan perturbed doses were evaluated using a setup error of 8 mm in all directions from the isocenter. The dosimetric comparison parameters were clinical target volume (CTV) doses (D98%, D50%, and D2%), liver doses, and monitor unit (MU). Plan complexity was evaluated using the modulation complexity score for VMAT (MCSv).ResultsThere was no significant difference between the two optimizations with respect to CTV doses and MUs. Robust optimized plans had a higher liver dose than did PTV-based optimized plans. Plan perturbed dose evaluations showed that doses to the CTV for the robust optimized plans had small variations. Robust optimized plans were less complex than PTV-based optimized plans. Robust optimized plans had statistically significant fewer leaf position errors than did PTV-based optimized plans.ConclusionsComparison of treatment plan quality, robustness, and plan complexity of both optimizations showed that robust optimization could be feasibile for VMAT of liver cancer.  相似文献   

12.
13.
PurposeTo define optimal planning target volume (PTV) margins for intensity modulated radiotherapy (IMRT) ± knee-heel support (KHS) in patients treated with adjuvant radiotherapy.MethodsComputed tomography (CT) scans ± KHS of 10 patients were taken before and at 3rd and 5th week of treatment, fused and compared with initial IMRT plans.ResultsA PTV margin of 15 mm in anteroposterior (AP) and superoinferior (SI) directions and 5 mm in lateral directions were found to be adequate without any difference between ± KHS except for the SI shifts in CTV-primary at the 3rd week. Five mm margin for iliac CTV was found to be inadequate in 10–20% of patients in SI directions however when 7 mm margin was given for iliac PTV, it was found to be adequate. For presacral CTV, it was found that the most striking shift of the target volume was in the direction of AP. KHS caused significantly less volume of rectum and bladder in the treated volume.ConclusionsPTV margin of 15 mm in SI and AP, and 5 mm in lateral directions for CTV-primary were found to be adequate. A minimum of 7 mm PTV margin should be given to iliac CTV. The remarkable shifting in presacral CTV was believed to be due to the unforeseen hip malposition of obese patients. The KHS seems not to provide additional beneficial effect in decreasing the shifts both in CTV-primary and lymphatic, however it may have a beneficial effect of decreasing the OAR volume in PTV margins.  相似文献   

14.
PurposeTo demonstrate the strength of an innovative knowledge-based model-building method for radiotherapy planning using hypofractionated, multi-target prostate patients.Material and methodsAn initial RapidPlan model was trained using 48 patients who received 60 Gy to prostate (PTV60) and 44 Gy to pelvic nodes (PTV44) in 20 fractions. To improve the model's goodness-of-fit, an intermediate model was generated using the dose-volume histograms of best-spared organs-at-risk (OARs) of the initial model. Using the intermediate model and manual tweaking, all 48 cases were re-planned. The final model, trained using these re-plans, was validated on 50 additional patients. The validated final model was used to determine any planning advantage of using three arcs instead of two on 16 VMAT cases and tested on 25 additional cases to determine efficacy for single-PTV (PTV60-only) treatment planning.ResultsFor model validation, PTV V95% of 99.9% was obtained by both clinical and knowledge-based planning. D1% was lower for model plans: by 1.23 Gy (PTV60, CI = [1.00, 1.45]), and by 2.44 Gy (PTV44, CI = [1.72, 3.16]). OAR sparing was superior for knowledge-based planning: ΔDmean = 3.70 Gy (bladder, CI = [2.83, 4.57]), and 3.22 Gy (rectum, CI = [2.48, 3.95]); ΔD2% = 1.17 Gy (bowel bag, CI = [0.64, 1.69]), and 4.78 Gy (femoral heads, CI = [3.90, 5.66]). Using three arcs instead of two, improvements in OAR sparing and PTV coverage were statistically significant, but of magnitudes < 1 Gy. The model failed at reliable DVH predictions for single PTV plans.ConclusionsOur knowledge-based model delivers efficient, consistent plans with excellent PTV coverage and improved OAR sparing compared to clinical plans.  相似文献   

15.
16.
The aim of this study was to evaluate the dosimetric effect of continuous motion monitoring based localization (Calypso, Varian Medical Systems), gating and intrafraction motion correction in prostate SBRT. Delivered doses were modelled by reconstructing motion inclusive dose distributions for different localization strategies. Actually delivered dose (strategy A) utilized initial Calypso localization, CBCT and additional pre-treatment motion correction by kV-imaging and Calypso, and gating during the irradiation. The effect of gating was investigated by simulating non-gated treatments (strategy B). Additionally, non-gated and single image-guided (CBCT) localization was simulated (strategy C). A total of 308 fractions from 22 patients were reconstructed. The dosimetric effect was evaluated by comparing motion inclusive target and risk organ dose-volume parameters to planned values. Motion induced dose deficits were seen mainly in PTV and CTV to PTV margin regions, whereas CTV dose deficits were small in all strategies: mean ± SD difference in CTVD99% was –0.3 ± 0.4%, −0.4 ± 0.6% and –0.7 ± 1.2% in strategies A, B and C, respectively. Largest dose deficits were seen in individual fractions for strategy C (maximum dose reductions were −29.0% and –7.1% for PTVD95% and CTVD99%, respectively). The benefit of gating was minor, if additional motion correction was applied immediately prior to irradiation. Continuous motion monitoring based localization and motion correction ensured the target coverage and minimized the OAR exposure for every fraction and is recommended to use in prostate SBRT. The study is part of clinical trial NCT02319239.  相似文献   

17.
PurposeAccurate localization is crucial in delivering safe and effective stereotactic body radiation therapy (SBRT). The aim of this study was to analyse the accuracy of image-guidance using the cone-beam computed tomography (CBCT) of the VERO system in 57 patients treated for lung SBRT and to calculate the treatment margins.Materials and methodsThe internal target volume (ITV) was obtained by contouring the tumor on maximum and mean intensity projection CT images reconstructed from a respiration correlated 4D-CT. Translational and rotational tumor localization errors were identified by comparing the manual registration of the ITV to the motion-blurred tumor on the CBCT and they were corrected by means of the robotic couch and the ring rotation. A verification CBCT was acquired after correction in order to evaluate residual errors.ResultsThe mean 3D vector at initial set-up was 6.6 ± 2.3 mm, which was significantly reduced to 1.6 ± 0.8 mm after 6D automatic correction. 94% of the rotational errors were within 3°. The PTV margins used to compensate for residual tumor localization errors were 3.1, 3.5 and 3.3 mm in the LR, SI and AP directions, respectively.ConclusionsOn-line image guidance with the ITV–CBCT matching technique and automatic 6D correction of the VERO system allowed a very accurate tumor localization in lung SBRT.  相似文献   

18.
PurposeThis study aims to use GATE/Geant4 simulation code to evaluate the performance of dose calculations with Anisotropic Analytical Algorithm (AAA) in the context of lung SBRT for complex treatments considering images of patients.MethodsFour cases of non-small cell lung cancer treated with SBRT were selected for this study. Irradiation plans were created with AAA and recalculated end to end using Monte Carlo (MC) method maintaining field configurations identical to the original plans. Each treatment plan was evaluated in terms of PTV and organs at risk (OARs) using dose-volume histograms (DVH). Dosimetric parameters obtained from DVHs were used to compare AAA and MC.ResultsThe comparison between the AAA and MC DVH using gamma analysis with the passing criteria of 3%/3% showed an average passing rate of more than 90% for the PTV structure and 97% for the OARs. Tightening the criteria to 2%/2% showed a reduction in the average passing rate of the PTV to 86%. The agreement between the AAA and MC dose calculations for PTV dosimetric parameters (V100; V90; Homogeneity index; maximum, minimum and mean dose; CIPaddick and D2cm) was within 18.4%. For OARs, the biggest differences were observed in the spinal cord and the great vessels.ConclusionsIn general, we did not find significant differences between AAA and MC. The results indicate that AAA could be used in complex SBRT cases that involve a larger number of small treatment fields in the presence of tissue heterogeneities.  相似文献   

19.
Background and purposeHigh dose rate (HDR) brachytherapy is a clinically used procedure in prostate cancer treatment. The purpose of this study was to present the influence of using different optimization algorithms in 3D-CBRT planning on the treatment plan quality.Materials and methodsTreatment plans were calculated for 15 patients – three plans for each patient using: geometrical optimization (GO), inverse optimization (IO) and blind inverse optimization (BIO). For each patient, PTV and OAR volumes, number of needles and geometry of the implant were set equal. Differences between dose distributions were tracked using: D90, V100, V200, Dmax (for prostate); D10, Dmax (for urethra); D10, V100, Dmax (for rectum).ResultsThe analysis of mean values of D90 and V100 in the prostate showed that inverse algorithms gave the best results (mean D90 was 12.1% for BIO and 9.3% for IO better than for GO, mean V100 was 8.2% for BIO and 6.3% for IO better than for GO). From a clinical point of view, GO diminished the doses in the PTV and urethra in all analyzed parameters. The lowest mean doses in the rectum were achieved for plans optimized with IO and BIO (mean D10: 61.2% for GO, 58.1% for IO, 58.0% for BIO; mean Dmax: 92.8% for GO, 85.1% for IO, 83.6% for BIO).ConclusionsApplication of the blind inverse optimization (BIO) algorithm led to clinically best dose parameters for PTV and the rectum. Use of geometrical optimization (GO) led to smaller doses in the urethra, which was however associated with a certain dose decrease also in PTV.  相似文献   

20.
PurposeTo quantify relative merit of MU deprived plans against freely optimized plans in terms of plan quality and report changes induced by progressive resolution optimizer algorithm (PRO3) to the dynamic parameters of RapidArc.Materials and methodsTen cases of carcinoma hypopharynx were retrospectively planned in three phases without using MU tool. Replicas of these baseline plans were reoptimized using “Intermediate dose” feature and “MU tool” to reduce MUs by 20%, 35%, and 50%. Overall quality indices for target and OAR, integral dose, dose-volume spread were assessed. All plans were appraised for changes induced in RapidArc dynamic parameters and pre-treatment quality assurance (QA).ResultsWith increasing MU reduction strength (MURS), MU/Gy values reduced, for all phases with an overall range of 8.6–34.7%; mean dose rate decreased among plans of each phase, phase3 plans recorded greater reductions. MURS20% showed good trade-off between MUs and plan quality. Dose-volume spread below 5 Gy was higher for baseline plans while lower between 20 and 35 Gy. Integral dose was lower for MURS0%, not exceeding 1.0%, compared against restrained plans. Mean leaf aperture and control point areas increased systematically, correlated negatively with increasing MURS. Absolute delta dose rate variations were least for MURS0%. MU deprived plans exhibited GAI (>93%), better than MURS0% plans.ConclusionBaseline plans are superior to MU restrained plans. However, MURS20% offers equivalent and acceptable plan quality with mileage of MUs, improved GAI for complex cases. MU tool may be adopted to tailor treatment plans using PRO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号