首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The effect of mating success, female fecundity and survival probability associated with intra‐sex variation in body size was studied in Mesophylax aspersus, a caddisfly species with female‐biased sexual size dimorphism, which inhabits temporary streams and aestivates in caves. Adults of this species do not feed and females have to mature eggs during aestivation. 2. Thus, females of larger size should have a fitness advantage because they can harbour more energy reserves that could influence fecundity and probability of survival until reproduction. In contrast, males of smaller size might have competitive advantages over others in mating success. 3. These hypotheses were tested by comparing the sex ratio and body size of individuals captured before and after the aestivation period. The associations between body size and female fecundity, and between mating success and body size of males, were explored under laboratory conditions. 4. During the aestivation period, the sex ratio changed from 1 : 1 to male biased (4 : 1), and a directional selection on body size was detected for females but not for males. Moreover, larger clutches were laid by females of larger size. Finally, differences in mating success between small and large males were not detected. These results suggest that natural selection (i.e. the differential mortality of females associated with body size) together with possible fecundity advantages, are important factors responsible of the sexual size dimorphism of M. aspersus. 5. These results highlight the importance of taking into account mechanisms other than those traditionally used to explain sexual dimorphism. Natural selection acting on sources of variation, such as survival, may be as important as fecundity and sexual selection in driving the evolution of sexual size dimorphism.  相似文献   

2.
Most studies on size–fitness relationships focus on females and neglect males. Here, we investigated how body size of both sexes of an aphid parasitoid, Aphidius ervi Haliday, affected the reproductive fitness. Reproductive fitness was generally positively correlated with body size for both sexes in this species. Large individuals of both sexes had greater longevity, large males fathered more progeny, and large females had higher fecundity, parasitism, and greater ability in host searching and handling. We demonstrated in this study that size effects of males and females were asymmetric on different reproductive fitness parameters. With increasing body size females gained more than males in longevity and fecundity while males gained more than females in the number of female progeny. Regardless of female size, large males sustained a female-biased population longer than small males. These results suggest that male body size should also be considered in the quality control of mass-rearing programs and the evaluation of parasitoid population growth.  相似文献   

3.
Most hypotheses related to the evolution of female‐biased extreme sexual size dimorphism (SSD) attribute the differences in the size of each sex to selection for reproduction, either through selection for increased female fecundity or selection for male increased mobility and faster development. Very few studies, however, have tested for direct fitness benefits associated with the latter – small male size. Mecaphesa celer is a crab spider with extreme SSD, whose males are less than half the size of females and often weigh 10 times less. Here, we test the hypotheses that larger size in females and smaller size in males are sexually selected through differential pre‐ and postcopulatory reproductive benefits. To do so, we tested the following predictions: matings between small males and large females are more likely to occur due to mate choice; females mated to small males are less likely to accept second copulation attempts; and matings between small males and large females will result in larger clutches of longer‐lived offspring. Following staged mating trials in the laboratory, we found no support for any of our predictions, suggesting that SSD in M. celer may not be driven by pre‐ or post‐reproductive fitness benefits to small males.  相似文献   

4.
Omkar    Uzma Afaq 《Insect Science》2013,20(4):531-540
In the Parthenium beetle, Zygogramma bicolorata Pallister (Coleoptera: Chrysomelidae), variation in body size exists between and within the sexes. The females are larger than the males. Darwin (1874) proposed the fecundity advantage hypothesis, that is, large‐sized females produce more progeny, with subsequent studies supporting, as well as, refuting the hypothesis. Thus, in order to evaluate whether this hypothesis stands in Z. bicolorata we performed experiments to investigate the role of body size in influencing: (i) assortative mating; (ii) reproductive attributes; and (iii) growth, development and survival of offspring. It is the first attempt in this beetle. We found that size influenced assortative mating, reproductive output and offspring fitness. Larger males and females were preferred as mates over smaller ones. The pairs, having larger adults as mates, had higher fecundity, while the egg viability was influenced by the male size only. The offspring of larger parents had fast development and higher survival, indicating thereby possible better nutrient allotment by the female and supply of accessory gland proteins by the male in addition to better quality of genes.  相似文献   

5.
A large body size is considered to be advantageous to the reproductive success of females as a result of several factors, such as the allocation of more resources to reproduction and the efficient management of sperm transferred by males. In the present study, the effects of female body size, female mating status and additional food availability on fecundity and the offspring sex ratio are investigated in the parasitoid wasp Anisopteromalus calandrae Howard (Hymenoptera: Pteromalidae). Because of haplodiploid sex determination, females must fertilize eggs to produce female offspring but not to produce male offspring. As predicted, female fecundity and the number of female offspring are positively correlated with body size. However, although the volume of the spermatheca increases with female body size, the amount of sperm stored in the spermatheca is relatively constant, irrespective of body size. Consequently, larger females produce a greater proportion of male offspring, especially at the end of the oviposition sequence, suggesting that larger females that possess more resources for reproduction and produce a larger number of offspring are more likely to suffer sperm depletion. The results of the present study also show that mated females have an increased fecundity compared with virgin females, although the opportunity to feed on honey along with host feeding has no impact upon fecundity or the sex ratio.  相似文献   

6.
1. In burying beetles (Nicrophorinae), body size is known to provide both a fecundity advantage (in females) and successful resource defence (in males and females). Despite this, considerable variation in body sizes is observed in natural populations. 2. A possible explanation for the maintenance of this variation, even with intra‐ and inter‐specific resource competition, is that individuals might assort according to body size on different‐sized breeding resources. 3. We tested prediction that ‘bigger is always better’, in the wild and in the laboratory, by experimentally manipulating combinations of available breeding‐resource size (mouse carcasses) and competitor's body size in Nicrophorus vespilloides (Herbst 1783). 4. In the field, large female beetles deserted small carcasses, without breeding, more often than they did larger carcasses, but small females used carcasses indiscriminately with respect to size. In the laboratory, large beetles reared larger broods (with more offspring) on larger carcasses than small beetles, but on small carcasses small beetles had a reproductive advantage over large ones. Offspring size covaried with carcass size independently of parental body size. 5. The present combined results suggest breeding resource value depends on an individual's body size, and variation in body size is environmentally induced: maintained by differences in available carcass sizes. This produces a mechanism by which individual specialisation leads to an increase in niche variation via body size in these beetles.  相似文献   

7.
Aday DD  Philipp DP  Wahl DH 《Oecologia》2006,147(1):31-38
The ultimate body size that an individual fish achieves can be a function both of direct effects of growth or indirect effects associated with the timing of sexual maturation (and associated energetic tradeoffs). These alternatives are often invoked to explain variation in body size within and among fish populations, but have rarely been considered simultaneously. We assessed how resource availability and timing of maturation interact to influence individual body size of bluegill (Lepomis macrochirus). Resource availability (high and low food) and the social structure of the population (presence or absence of large, mature males) were varied in experimental ponds. Food ration affected growth (larger fish in the high food treatments) and the social structure of the population affected timing of maturation (early maturation of males in the absence of large males). Treatment effects, however, were sex-specific; males responded to the social structure of the population and females were more responsive to resource availability. We also found individuals that became sexually mature were smaller than those that remained immature, although results were sex-specific and resource dependent. For males, individuals that matured were smaller when resources were limited; mature and immature females showed no difference in body size regardless of food ration. We show that both resource availability and the processes that control timing of maturation interact in sex-specific ways to influence body size of bluegill. These results suggest that a more robust explanation for variable body size requires consideration of sex-specific interactions between ecological (food and growth) and evolutionary (timing of maturation) mechanisms.  相似文献   

8.
Many organisms with complex life cycles show considerable variation in size and timing at metamorphosis. Adult males of Megarcyssignata (Plecoptera: Perlodidae) are significantly smaller than females and emerge before females (protandry) from two western Colorado streams. During summer 1992 stoneflies from a trout stream emerged earlier in the season and at larger sizes than those from a colder fishless stream, and size at metamorphosis did not change over the emergence period in either stream. We performed two experiments to determine whether variation in size at metamorphosis affected the fecundity, reproductive success and longevity of individuals of this stonefly species and if total lifetime fecundity was affected by the number of matings. In the first experiment, total lifetime fecundity (eggs oviposited) was determined for adult females held in small plastic cages in the field. Males were removed after one copulation, or pairs were left together for life and allowed to multiply mate. Most copulations occurred in the first few days of the experiment. Females in treatments allowing multiple matings had significantly lower total lifetime fecundity and shorter adult longevity than females that only mated once. Multiple matings also reduced longevity of males. Fecundity increased significantly with female body mass at emergence, but only for females that mated once. While multiple matings eliminated the fecundity advantage of large female body size, number of matings did not affect the significant positive relationship between body mass at metamorphosis and longevity of males or females. In a second experiment designed to determine if body mass at emergence affected male mating success, we placed one large and one small male Megarcys in an observation arena containing one female and recorded which male obtained the first mating. The large and the small male had equal probabilities of copulating with the female. Copulations usually lasted all night, and the unmated male made frequent, but unsuccessful attempts to take over the copulating female. Our data suggest that selection pressures determining body size at metamorphosis may operate independently on males and females, resulting in evolution of sexual size dimorphism, protandry, and mating early in the adult stage. We emphasize the importance of interpreting the fitness consequences of larval growth and development on the timing of and size at metamorphosis in the context of the complete life cycle. Received: 1 July 1997 / Accepted: 12 November 1997  相似文献   

9.
Summary We present an empirical test of the Ghiselin—Reiss small-male hypothesis for the evolution of sexual size dimorphism (SSD). In mating systems dominated by scramble competition, where male reproductive success is a function of encounter rate with females, small males may be favoured when food is limiting because they require lower absolute amounts of food. Given a trade-off between time and energy devoted to foraging and to mate acquisition, small males should be able to devote more time to the latter. If at the same time larger females are favoured, this mechanism will contribute to the evolution of SSD and may be the major determinant of the female-biased SSDs that characterize most animal taxa. We tested this hypothesis using the water strider,Aquarius remigis (Heteroptera: Gerridae), a scramble competitor which mates many times over a prolonged mating season and which shows female-biased SSD. Laboratory experiments demonstrated that foraging success and giving up times (GUTs) are lower for males than for females during the reproductive season and that male water striders flexibly alter their time budgets under conditions of energy limitation. Controlled feeding experiments showed that male and female longevity, female fecundity and male mating success are positively related to food availability. As predicted, male body size is negatively correlated with several indices of male fitness (longevity, number of mating attempts and mating success), while female body size is positively correlated with longevity. These results are consistent with the hypothesis that scramble competition for mates favours small males in this species and provides empirical support for the Ghiselin—Reiss small-male hypothesis.  相似文献   

10.
Using field and laboratory observations and experiments over 3 years, I investigated whether reproductive trade-offs shape individual life histories in two natural populations of the water strider, Aquarius remigis, in which univoltine and bivoltine life cycles coexist. Both later eclosion dates and food shortages, even after adult eclosion, induced diapause in females, thus deferring reproduction to the following spring. Adult body size was positively affected by food availability during juvenile development. Higher food levels also increased the reproductive output of females, but not their longevity or oviposition period. When compared to spring breeders (univoltine life cycle), direct (summer) breeders (bivoltine life cycle) experienced reduced lifetime egg numbers and longevity, as well as reduced survivorship of their second-summer-generation offspring; these reproductive costs offset, at least in part, the advantage in non-decreasing populations of having two generations per year. Fecundity was correlated with body size, and among summer-generation females direct breeders were larger than non-breeders. The time remaining before the onset of winter and/or the time since adult eclosion augmented cumulative energy uptake, and consequently the lipid reserves and winter survival probability of non-breeding (diapausing) summer adults approaching hibernation. Overwintered spring reproductives died at faster rates than non-reproductive summer individuals despite greater food availability in spring, indicating a mortality cost of reproduction. Body length correlated with absolute and not with proportional lipid content but showed no consistent relationship with survivorship in the field. These results are in agreement with current theory on the evolution of insect voltinism patterns, and further indicate high degrees of life history flexibility (phenotypic plasticity) in the study populations in response to variable environmental factors (notably photoperiod and food availability). This may be related to their location in a geographic transition zone from uni- to bivoltine life cycles.  相似文献   

11.
It is widely agreed that fecundity selection and sexual selection are the major evolutionary forces that select for larger body size in most organisms. The general, equilibrium view is that selection for large body size is eventually counterbalanced by opposing selective forces. While the evidence for selection favoring larger body size is overwhelming, counterbalancing selection favoring small body size is often masked by the good condition of the larger organism and is therefore less obvious. The suggested costs of large size are: (1) viability costs in juveniles due to long development and/or fast growth; (2) viability costs in adults and juveniles due to predation, parasitism, or starvation because of reduced agility, increased detectability, higher energy requirements, heat stress, and/or intrinsic costs of reproduction; (3) decreased mating success of large males due to reduced agility and/or high energy requirements; and (4) decreased reproductive success of large females and males due to late reproduction. A review of the literature indicates a substantial lack of empirical evidence for these various mechanisms and highlights the need for experimental studies that specifically address the fitness costs of being large at the ecological, physiological, and genetic levels. Specifically, theoretical investigations and comprehensive case studies of particular model species are needed to elucidate whether sporadic selection in time and space is sufficient to counterbalance perpetual and strong selection for large body size.  相似文献   

12.
Body size can influence an organism's microevolutionary fitness either via ecological factors (ecological selection) or changes in reproductive output (sexual or fecundity selection). Published studies on sexual dimorphism in reptiles have generally focussed on sexual-selective forces on males, under the implicit assumption that the intensity of fecundity selection in females (and hence, overall selection on female body size) is likely to be relatively consistent among lineages. In this paper, we explore the degree to which larger body size enhances ecological attributes (e.g., food intake, growth, survival) and reproductive output (reproductive frequency, litter size, offspring size, offspring viability) in free-ranging female aspic vipers, Vipera aspis . The less-than-annual reproductive frequency of these animals allows us to make a direct comparison between females in years during which they concentrate on "ecological" challenges (especially building energy reserves) versus reproductive challenges (producing a litter). Because female snakes have limited abdominal space to hold the clutch (litter), we expect that fecundity should depend on body size. However, our data show that larger body size had a more consistent effect on ecological attributes (such as feeding rates and "costs of reproduction") than on reproductive output per se. Indeed, total reproductive output was maximised at intermediate body sizes. These results suggest that variation in female body size among and within species (and hence, in the degree of sexual dimorphism) may be driven by the ecological as well as reproductive consequences of body size variation in both sexes.  相似文献   

13.
We estimated selection on adult body size for two generations in two populations of Aquarius remigis, as part of a long‐term study of the adaptive significance of sexual size dimorphism (SSD). Net adult fitness was estimated from the following components: prereproductive survival, daily reproductive success (mating frequency or fecundity), and reproductive lifespan. Standardized selection gradients were estimated for total length and for thorax, abdomen, genital and mesofemur lengths. Although selection was generally weak and showed significant temporal and spatial heterogeneity, patterns were consistent with SSD. Prereproductive survival was strongly influenced by date of eclosion, but size (thorax and genital lengths in females; total and abdomen lengths in males) played a significant secondary role. Sexual selection favoured smaller males with longer external genitalia in one population. Net adult fitness was not significantly related to body size in females, but was negatively related to size (thorax and total length) in males.  相似文献   

14.
Life-history theory predicts that older females will increase reproductive effort through increased fecundity. Unless offspring survival is density dependent or female size constrains offspring size, theory does not predict variation in offspring size. However, empirical data suggest that females of differing age or condition produce offspring of different sizes. We used a dynamic state-variable model to determine when variable offspring sizes can be explained by an interaction between female age, female state and survival costs of reproduction. We found that when costs depend on fecundity, young females with surplus state increase offspring size and reduce number to minimize fitness penalties. When costs depend on total reproductive effort, only older females increase offspring size. Young females produce small offspring, because decreasing offspring size is less expensive than number, as fitness from offspring investment is nonlinear. Finally, allocation patterns are relatively stable when older females are better at acquiring food and are therefore in better condition. Our approach revealed an interaction between female state, age and survival costs, providing a novel explanation for observed variation in reproductive traits.  相似文献   

15.
In aphidiine parasitoids, resources for growth and adult body size increase with host instar used by ovipositing females, but the fitness consequences of body size on fitness are poorly documented. We compared the fitness of male and female A. nigripesadults that varied in size as a consequence of developing in different instars of their host Macrosiphum euphorbiae. When reproductive fitness was measured without considering time, female wasps from small and large hosts performed similarly, contributing 125–175 foundresses plus 100–180 sons to the next generation. However, when expressed as the innate capacity for increase (r m), female fitness correlated with host-induced variation of wasp size, indicating that micropopulations initiated by large wasps would increase faster. In a wind-tunnel, a sex pheromone plume from large female wasps induced more males to fly upwind when released at a distance of 50 cm downwind than small females, indicating that large females were sexually more attractive. With respect to male body size effects on fitness, large individuals performed similar to small ones, whether fitness was measured by lifetime mating frequency, fertile inseminations, or proportion of daughters among progeny born from their mates. When young naive males of unequal size were directly competing for mating with a virgin female, small and large males had equal mating success, and large individuals were no more successful than small ones at displacing a competitor already positioned on a receptive female. In a wind-tunnel test where males were scored on their ability to reach a female pheromone source, small and large males were equally affected by wind speed but reached the source located 50 cm downwind in equal proportions, suggesting similar capacity for finding mates by flying upwind. Our results indicate that despite host resources not being fixed at the time of attack for the koinobiont A. nigripes, fitness consequences of resource limitation by the mother may be perceived to be greater for daughters than sons, which would explain male-biased sex ratio in early-instar hosts.  相似文献   

16.
Abstract.  1. An important constraint upon life-history evolution in parasitoids is the limit imposed by body size on allocation of limited metabolic resources to different fitness-related physiological functions such as reproduction and survival.
2. The influence of adult nutrition on reproductive and maintenance variables was studied in the synovigenic ectoparasitoid Mastrus ridibundus , and it was determined whether resource allocation to these different functions depends on body size.
3. Over the course of adult life there was a positive relationship between body size and the number of mature eggs in adult females both in the presence and absence of food. However, only in the presence of food did egg maturation rates increase significantly with body size. Starved wasps produced significantly smaller eggs than fed ones, which has not been documented before. Moreover, starved wasps produced fewer offspring than fed wasps, and attacked fewer hosts.
4. The availability of food had a major effect on longevity, with fed females living about 10 times longer than starved ones. There was also a positive relationship between body size and longevity. In starved wasps, this relationship was the same both in the presence and absence of hosts, but in fed wasps there was a positive relationship between body size and longevity in the absence of hosts only. Allocation to initial eggs relative to lifetime progeny production did not decline with body size.
5. The data reveal that in M. ridibundus the trade-off between maintenance and reproduction varies with life expectancy.  相似文献   

17.
In this study, the effects of maternal age, diet, and size on offspring sex ratio were investigated for the solitary egg parasitoid, Anaphes nitens Girault (Hymenoptera: Mymaridae), both outdoors, during the winter, and inside a climatic chamber under favourable constant conditions. During the winter of 2005–2006, each of seven groups containing 40 1‐day‐old females was mated and randomly distributed among two treatments: (treatment 1) a droplet of undiluted honey ad libitum + one fresh egg capsule of the snout beetle Gonipterus scutellatus Gyllenhal (Coleoptera: Curculionidae) as host; (treatment 2) drops of water + one fresh egg capsule of G. scutellatus. We recorded the lifetime fecundity, the daily sex allocation, and the lifetime offspring sex ratio to study the existence of a relationship with maternal characteristics. Moreover, we assessed the effect of location (outdoors vs. indoors) and group (groups are representative of early, mid, and late winter) on sex ratio. The most important factor that biased the sex ratio was maternal body size: larger females of both treatments produced more female offspring. As females of A. nitens could gain more advantage than males from body size, larger mothers have a higher fitness return if they produce more daughters. The effect of the treatment was significant: starved females produced more females. Location and group were not significant. Fecundity and sex ratio were age dependent. Old mothers that received honey (treatment 1) had fewer offspring and a more male‐biased offspring sex ratio, probably due to reproductive senescence and sperm depletion. Starved females (treatment 2) experienced reproductive decline earlier, perhaps because they invested more energy in maintenance rather than in reproduction.  相似文献   

18.
We experimentally manipulated the strength of selection in the field on red-winged blackbirds (Agelaius phoeniceus) to test hypotheses about contrasting selective forces that favor either large or small males in sexually size dimorphic birds. Selander (1972) argued that sexual selection favors larger males, while survival selection eventually stabilizes male size because larger males do not survive as well as smaller males during harsh winters. Searcy (1979a) proposed instead that sexual selection may be self limiting: male size might be stabilized not by overwinter mortality, but by breeding-season sexual selection that favors smaller males. Under conditions of energetic stress, smaller males should be able to display more and thus achieve higher reproductive success. Using feeders that provisioned males or females but not both, we produced conditions that mimicked the extremes of natural conditions. We found experimental support for the hypothesis that when food is abundant, sexual selection favors larger males. But even under conditions of severe energetic stress, smaller males did not gain larger harems, as the self-limiting hypothesis predicted. Larger males were more energetically stressed than smaller males, but in ways that affected their future reproductive output rather than their current reproductive performance. Stressed males that returned had smaller wings and tails than those that did not return; among returning stressed males, relative harem sizes were inversely related to wing and tail length. Thus, male body size may be stabilized not by survival costs during the non-breeding season, nor by energetic costs during the breeding season, but by costs of future reproduction that larger males pay for their increased breeding-season effort.  相似文献   

19.
Abstract. 1. The beetle Parastizopus armaticeps (Coleoptera: Tenebrionidae) inhabits the Kalahari desert of southern Africa, constructs breeding burrows after rainfall, and shows extensive biparental care. Previous work has shown that it is predominantly male size, not female size, that determines breeding success; however, in the field these beetles show size assortative mating. This might obscure or override effects of female size on reproduction. Moreover, the inaccessibility of the breeding burrows makes it impossible to test effects of female and male size on offspring development and survival before adulthood. 2. To disentangle the effects of male and female length, body mass, and body condition on reproductive success, males and females were paired randomly in small breeding cages in the laboratory (n = 887 breeding pairs). The construction of the breeding cages allowed a clear view of the brood chamber contents at each stage in offspring development. Larva, pupa, and imago numbers and development were monitored daily, and imago mass at hatching from the pupa (hatchlings), offspring mass, and offspring body length at complete exoskeleton melanisation (juveniles) were determined. 3. There was a weak positive correlation between body condition and body length for females only. Breeding chronology was related to male body condition: males in better condition were fast to start and finish a breeding bout. Males in better condition produced heavier hatchlings and juveniles, and larger‐sized males produced larger‐sized juveniles. In contrast, numbers of larvae and juveniles produced were determined mainly by female length and body condition: larger females in better condition hatched more larvae and produced more offspring. 4. The results suggest that male size and condition will be the most important determinant of reproductive success under relatively dry conditions, when burrow length is critical for reproductive success. Female size might be more important for the pair's reproductive success under wet breeding conditions, when burrow length is less critical for successful reproduction.  相似文献   

20.
Food availability is likely to influence body condition and, in turn, fitness. The intensity of this response may vary between populations of the same species on a small spatial and temporal scale. We used 5 yr of data from 6 Eurasian red squirrel Sciurus vulgaris populations from the southern Alps to explore differences in body size and body mass among neighbouring populations, in relation to habitat type and variation in food supply. We also investigated sexual dimorphism in these traits and whether phenotypic variation affects local survival and female reproductive success. Mean hind foot length, a measure of body size, did not differ between sexes but differed between areas. Seasonal variation in body mass was small with no evidence for fattening in autumn. Females were slightly heavier than males, but this difference was largely explained by mass gain of females during reproduction. The size of conifer seed crops, the major food supply, varied strongly over years and between habitats, but this variation corresponded only weakly with autumn body mass. Differences in size and mass between populations were partially explained by habitat‐related differences in body size and variability of seed‐crops, suggesting differential selection for smaller squirrels in spruce‐larch forests against selection for larger and heavier animals in mixed broadleaves and conifer forests and in Scots pine forests with more stable seed production. The probability of reproduction by females increased with body mass, but varied strongly between habitats and years, with more females reproducing in years with rich seed‐crops. In both sexes, body mass positively affected probability of settlement and length of residency. Our results suggest that in temporally variable environments that differ in overall amount of food resources, individual variation in body mass is related to habitat type, and that having a relatively high body mass, within each population, positively affects male and female settlement success and local survival, and female reproductive success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号