首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 242 毫秒
1.
Normalization of hyperglycemia and hyperlipidemia is an important objective in preventing diabetes-induced cardiac dysfunction. Our study investigated the effects of sodium tungstate on cardiac performance in streptozotocin-induced (STZ) diabetic rats based on its potential antidiabetic and antioxidant activity. Male Wistar rats were made STZ-diabetic and then treated with tungstate in their drinking water for 9 weeks. Body mass, food and fluid intake, plasma glucose, insulin, triglyceride, and free fatty acids levels were measured. At the termination of the study period, an oral glucose tolerance test (OGTT) was performed, and cardiac performance was evaluated using an isolated working heart apparatus. Tungstate-treated STZ-diabetic rats showed a significant reduction in fluid and food intake, plasma glucose, triglycerides, and free fatty acid levels, and improved tolerance to glucose in OGTT, owing to tungstate-mediated enhancement of insulin activity rather than increased insulin levels. Left ventricular pressure development, the rate of contraction (+dP/dT), and the rate of relaxation (-dP/dT) were significantly improved in tungstate-treated diabetic rats. Apart from a decreased rate of body mass gain, no other signs of toxicity or hypoglycemic episodes were observed in tungstate-treated rats. This study extends previous observations on the antidiabetic activities of tungstate, and also reports for the first time the salutary effects in preventing diabetic cardiomyopathy.  相似文献   

2.
本文研究了金耳菌丝体多糖(TMP)对实验性2型糖尿病大鼠血糖、血脂、胰岛素敏感性和抗氧化能力的影响。采用烟酰胺,链脲佐菌素和高脂饲料诱导2型糖尿病大鼠模型,以50和100mg/(kg.d)剂量的TMP连续灌胃48d,监测血糖,测定血清胰岛素、体重、脂代谢及抗氧化系统部分相关指标,并进行口服糖耐量实验。结果显示,TMP可明显降低2型糖尿病大鼠的血清葡萄糖、总胆固醇、甘油三酯和丙二醛水平,并极显著提高受试模型鼠的胰岛素敏感指数,血清超氧化物歧化酶活性和肝脏过氧化氢酶活性。此外,TMP能显著降低糖耐量实验中糖负荷后120min时糖尿病大鼠的血糖含量。上述结果表明TMP可有效降低实验性2型糖尿病大鼠的血糖水平,纠正脂代谢紊乱,改善胰岛素抵抗,增强抗氧化能力。  相似文献   

3.
Chlorella, a type of unicellular fresh water algae, has been a popular foodstuff in Japan and Taiwan. Chlorella has been shown to produce hypoglycemic effects in alloxan-induced diabetic animals. However, there are no other reports of the effects of this substance in other diabetic animal models. Here we have used streptozocin (STZ)-induced diabetic mice to study the thypoglycemic effects of Chlorella. Diabetes was induced in ICR strain mice by the i.p. injection of STZ. Vehicle-treated ICR mice were used as normal control animals and glibenclamide was used as a positive drug control. The effects of Chlorella on basal blood glucose, exogenous insulin sensitivity test and plasma insulin levels were measured. In normal mice Chlorella produced a transient hypoglycemic effect at 90 min after acute administration; whereas glibenclamide produced a more sustained hypoglycemic effect between 90 min and 180 min after acute administration. Chlorella did not affect the basal blood glucose level in STZ mice. However, Chlorella enhanced and prolonged the hypoglycemic effects of injected insulin in STZ mice for a further 60 min compared to the normal vehicle-treated group. Plasma insulin levels were increased in normal mice after treatment with glibenclamide, whereas Chlorella had no such effect. The current results indicate that Chlorella enhances the hypoglycemic effects of exogenous insulin at a dose which does not produce hypoglycemia in STZ mice, suggesting that insulin sensitivity is increased in these mice.  相似文献   

4.
5.
Effect of chronic treatment with Bis(maltolato)oxovanadium (IV) (BMOV) was studied in streptozotocin (STZ)-induced neonatal non-insulin-dependent-diabetic (NIDDM) rats. Intraperitoneal injection of STZ (90 mg kg(-1)) in Wistar rat pups (day 2 old) produced mild hyperglycemia, impaired glucose tolerance and insulin resistance at the age of 3 months. Treatment with BMOV (0.23 mM kg(-1)) in drinking water for 6 weeks produced a significant decrease in elevated serum glucose levels without any significant change in serum insulin levels in diabetic rats. BMOV treatment significantly decreased integrated area under the glucose curve without any significant change in integrated area under the insulin curve indicating improved glucose tolerance. Treatment also significantly increased K(ITT) value of diabetic rats indicating increased insulin sensitivity. BMOV treatment significantly reduced hypercholesterolemia in diabetic rats. Treatment also significantly decreased serum triglyceride levels in both diabetic and non-diabetic rats. The data suggest that chronic BMOV treatment improves glucose and lipid homeostasis. These effects appear to be due to the insulin sensitizing action of vanadium.  相似文献   

6.
Lo HC  Tsai FA  Wasser SP  Yang JG  Huang BM 《Life sciences》2006,78(17):1957-1966
Mushroom polysaccharides have been shown to regulate glucose metabolism. Using male Wistar rats injected with saline (normal rats), streptozotocin (STZ-NT rats), or streptozotocin plus nicotinamide (STZ+NT rats), we investigated the hypoglycemic activity of orally ingested fruiting bodies (FB), submerged culture biomass (CM), or the acidic polysaccharide glucuronoxylomannan (GXM) of Tremella mesenterica, an edible jelly mushroom. Our results demonstrated that FB ingestion significantly attenuated the elevated blood glucose levels in an oral glucose tolerance test (OGTT) in STZ-NT rats. However, in STZ+NT rats, FB, CM, and GXM ingestion significantly attenuated the increases in food and water intake, 2-h postprandial blood glucose concentrations, and blood glucose levels in OGTT. Moreover, FB and GXM ingestion significantly decreased serum concentration of fructosamine in STZ+NT rats. Our results indicated that T. mesenterica might be developed as a potential oral hypoglycemic agent or functional food for diabetic patients and for persons with high risk for diabetes mellitus.  相似文献   

7.
Yu WJ  Juang SW  Chin WT  Chi TC  Chang CJ  Cheng JT 《Life sciences》2000,68(6):625-634
Nitric oxide (NO) is known to play an important role in the pathophysiology of insulin-dependent diabetic mellitus (IDDM). In an attempt to investigate the relation between insulin and NO in IDDM, the present study employed male Wistar rats to induce IDDM by intravenous injection of streptozotocin (STZ). Four groups of rats were used; untreated normal control group, insulin treated STZ group, vehicle-treated STZ control, and one group of age-matched rats which were orally supplied with glucose to increase plasma glucose (glucose-challenged rats). Changes of the activity and gene expression of neuronal nitric oxide synthase (nNOS) were examined in cerebellum and kidney of these groups. The activity of nNOS in cerebellum, determined by conversion of [3H] L-arginine to [3H] L-citrulline, in STZ-induced diabetic rats was markedly lower than normal rats. Insulin treatment reversed the nNOS activity. Similar reversion by insulin treatment was also obtained in the gene expression of nNOS. However, the activity and gene expression of nNOS in glucose-challenged rats were not different from those in normal rats. The role of hyperglycemia can thus be ruled out. These findings indicated that an impairment of nNOS in the brain of rats with IDDM is mainly due to the absence of insulin.  相似文献   

8.
The aim of the present study was to determine the in vivo hypoglycemic activity of five organic extracts and enhydrin obtained from yacon leaves. The main constituents of the most active fraction were identified. Five organic extracts and pure crystalline enhydrin were administered to normoglycemic, transiently hyperglycemic and streptozotocin (STZ)-diabetic rats. The fasting and post-prandial blood glucose, and serum insulin levels were estimated and an oral glucose tolerance test (OGTT) was performed for the evaluation of hypoglycemic activity and dose optimization of each extract.We found that the methanol, butanol and chloroform extracts showed effective hypoglycemic activity at minimum doses of 50, 10 and 20 mg/kg body weight, respectively, and were selected for further experiments. Oral administration of a single-dose of each extract produced a slight lowering effect in the fasting blood glucose level of normal healthy rats, whereas each extract tempered significantly the hyperglycemic peak after food ingestion. Daily administration of each extract for 8 weeks produced an effective glycemic control in diabetic animals with an increase in the plasma insulin level. Phytochemical analysis of the most active fraction, the butanol extract, showed that caffeic, chlorogenic and three dicaffeoilquinic acids were significant components. Additionally, enhydrin, the major sesquiterpene lactone of yacon leaves, was also effective to reduce post-prandial glucose and useful in the treatment of diabetic animals (minimum dose: 0.8 mg/kg body weight).The results presented here strongly support the notion that the phenolic compounds above as well as enhydrin are important hypoglycemic principles of yacon leaves that could ameliorate the diabetic state.  相似文献   

9.
Chi TC  Chen WP  Chi TL  Kuo TF  Lee SS  Cheng JT  Su MJ 《Life sciences》2007,80(18):1713-1720
Resveratrol, a polyphenolic substance found in grape skin, is proposed to account in part for the protective effect of red wine in the cardiovascular system. The aim of the present study is to investigate the action and possible mechanisms of resveratrol-produced regulation of plasma glucose in normal and diabetic rats including the animal model of streptozotocin (STZ)-induced and nicotinamide-STZ-induced (NA-STZ), and insulin-resistant diabetic rats. Resveratrol (p.o.) produced a hypoglycemic effect in a dose-dependent manner in normal and diabetic rats, and the insulin level was increased following resveratrol treatment in normal and NA-STZ diabetic rats. In insulin-deficient STZ-diabetic rats, resveratrol significantly lowered the plasma glucose 90 min after oral treatment, and the hypoglycemic effect was abolished by phosphatidyl-3-kinase (PI3K) inhibitors (LY294002 and wortmannin) which also inhibited resveratrol-induced Akt phosphorylation in soleus muscle of STZ-diabetic rats. The change in the protein expression level of glucose transporter subtype 4 (GLUT4) in the soleus muscle and phosphoenolpyruvate carboxykinase (PEPCK) in the liver of STZ-diabetic rats treated with resveratrol (3 mg/kg, p.o.) for 7 days was examined. Resveratrol normalized hepatic PEPCK expression and increased GLUT4 expression in the soleus muscle of STZ-diabetic rats. The results indicate that the mechanisms contributing to the hypoglycemic effect of resveratrol include insulin-dependent and insulin-independent pathway, and PI3K-Akt-signaling was involved in the latter mechanism to enhance glucose uptake in skeletal muscle.  相似文献   

10.
Recently, we established that hypothalamo-pituitary-adrenal (HPA) and counterregulatory responses to insulin-induced hypoglycemia were impaired in uncontrolled streptozotocin (STZ)-diabetic (65 mg/kg) rats and insulin treatment restored most of these responses. In the current study, we used phloridzin to determine whether the restoration of blood glucose alone was sufficient to normalize HPA function in diabetes. Normal, diabetic, insulin-treated, and phloridzin-treated diabetic rats were either killed after 8 days or subjected to a hypoglycemic (40 mg/dl) glucose clamp. Basal: Elevated basal ACTH and corticosterone in STZ rats were normalized with insulin but not phloridzin. Increases in hypothalamic corticotrophin-releasing hormone (CRH) and inhibitory hippocampal mineralocorticoid receptor (MR) mRNA with STZ diabetes were not restored with either insulin or phloridzin treatments. Hypoglycemia: In response to hypoglycemia, rises in plasma ACTH and corticosterone were significantly lower in diabetic rats compared with controls. Insulin and phloridzin restored both ACTH and corticosterone responses in diabetic animals. Hypothalamic CRH mRNA and pituitary pro-opiomelanocortin mRNA expression increased following 2 h of hypoglycemia in normal, insulin-treated, and phloridzin-treated diabetic rats but not in untreated diabetic rats. Arginine vasopressin mRNA was unaltered by hypoglycemia in all groups. Interestingly, hypoglycemia decreased hippocampal MR mRNA in control, insulin-, and phloridzin-treated diabetic rats but not uncontrolled diabetic rats, whereas glucocorticoid receptor mRNA was not altered by hypoglycemia. In conclusion, despite elevated basal HPA activity, HPA responses to hypoglycemia were markedly reduced in uncontrolled diabetes. We speculate that defects in the CRH response may be related to a defective MR response. It is intriguing that phloridzin did not restore basal HPA activity but it restored the HPA response to hypoglycemia, suggesting that defects in basal HPA function in diabetes are due to insulin deficiency, but impaired responsiveness to hypoglycemia appears to stem from chronic hyperglycemia.  相似文献   

11.
本文评价了芦笋老茎澄清汁(CAJ)的降血糖作用,并对其降血糖机制进行了初步探讨。腹腔注射STZ制备类似1型糖尿病大鼠模型,以0.6,1.2和2.0 g/kg体重剂量的CAJ连续灌胃21 d,监测血糖,测定糖化血清蛋白、血清胰岛素、肝糖原、脂代谢及抗氧化系统部分相关指标。结果显示,CAJ可明显降低糖尿病大鼠血清中葡萄糖、糖化血清蛋白、总胆固醇和MDA含量,并显著提高受试模型鼠的血清胰岛素水平、肝糖原含量、血清SOD活性、肝脏SOD、GSH-Px和CAT的活性。上述结果表明CAJ可明显降低糖尿病大鼠的血糖水平,刺激胰岛素分泌,调节血脂,增强抗氧化能力。  相似文献   

12.
Q. Jia  X. Liu  X. Wu  R. Wang  X. Hu  Y. Li  C. Huang 《Phytomedicine》2009,16(8):744-750
Cinnamon bark has been reported to be effective in the alleviation of diabetes through its antioxidant and insulin-potentiating activities. The water-soluble polyphenolic oligomers found in cinnamon are thought to be responsible for this biological activity. In this study, the hypoglycemic activity of a polyphenolic oligomer-rich extract from the barks of Cinnamomum parthenoxylon (Jack) Nees was studied in normal, transiently hyperglycemic, and streptozotocin (STZ)-induced diabetic rats. Oral administration of the extract at doses of 100, 200, and 300 mg/kg body wt. caused significant changes in body weight loss and fasting blood glucose levels of normal rats. In STZ-induced diabetic rats, after administration of the extract at doses of 100, 200, and 300 mg/kg body wt. over 14 days, the blood glucose levels were decreased by 11.1%, 22.5%, and 38.7%, respectively, and the plasma insulin levels were significantly increased over pre-treatment levels. In an oral glucose tolerance test, the extract produced a significant decrease in glycemia 90 min after the glucose pulse. These results suggest that Cinnamomum parthenoxylon polyphenolic oligomer-rich extract could be potentially useful for post-prandial hyperglycemia treatment.  相似文献   

13.
A previous study in our laboratory showed that streptozotocin (STZ) induced diabetic, deoxycorticosterone acetate (DOCA) induced hypertensive rats exhibited significantly lower levels of plasma glucose than did normotensive diabetic animals. The present experiments further investigate the effects of DOCA treatment on fasting levels of plasma glucose and insulin and on their changes after oral glucose challenge in nondiabetic and STZ-diabetic rats. It was found that, in nondiabetic rats, DOCA-induced hypertension was associated with normal glucose levels and glucose tolerance but with significantly lower levels of plasma insulin. DOCA-treated diabetic animals showed significantly lower levels of plasma glucose, but their plasma insulin concentrations were not significantly different from those of the DOCA vehicle treated diabetic rats. DOCA-treated diabetic rats also had significantly higher plasma levels of cholesterol and triglycerides. It is suggested that DOCA may have a direct or indirect action on the assimilation, production, or utilization of glucose, perhaps leading to an improvement in insulin sensitivity and subsequently a decrease in insulin secretion.  相似文献   

14.
Cordyceps sinensis, a well-known traditional Chinese medicine, possesses anti-tumor, immunostimulant and antioxidant activities; however, the identities of active components have not been determined. In our previous study using antioxidant activity-guided fractionation [Li et al., 2003. A polysaccharide isolated from Cordyceps sinensis, a traditional Chinese medicine, protects PC12 cells against hydrogen peroxide-induced injury. Life Sci. 73, 2503-2513], a polysaccharide of molecular weight approximately 210kDa was isolated from cultured Cordyceps mycelia by ion-exchange and sizing chromatography. The isolated polysaccharide, named CSP-1, which has strong anti-oxidation activity, contains glucose, mannose and galactose in the ratio of 1:0.6:0.75. In the present study, we demonstrated the hypoglycemic effect of CSP-1 on normal and alloxan-diabetic mice and streptozotocin (STZ)-diabetic rats. The basal glucose level did not differ significantly among the normal mice. CSP-1 (at 200 and 400mg/kg body wt./day for 7 days, p.o.), however, significantly reduced the blood glucose level by 12.0+/-3.2% and 22.5+/-4.7% in normal mice, respectively (p<0.05). When administered at a dose of higher than 200mg/kg body wt. daily for 7 days, CSP-1 produced a significant drop in blood glucose level in both STZ-induced diabetic rats and alloxan-induced diabetic mice. The serum insulin levels in diabetic animals were also increased by administration of CSP-1 (p<0.05). CSP-1 with hypoglycemic properties increased circulating insulin level in diabetic animals, which suggests that CSP-1 may stimulate pancreatic release of insulin and/or reduce insulin metabolism.  相似文献   

15.
Morphological and functional changes of rat pancreatic islets caused by administration of streptozotocin (STZ) and the bioavailability of insulin formulations administered to STZ-induced diabetic rats with fasting (12 h) or non-fasting were investigated. Islets isolated from normal rats maintained a good three-dimensional structure and the islet yield was 962.5±86.5 islet equivalent number (IEQ, islets converted to an average diameter of 150 μm). In the diabetic group (>500 mg/ml blood glucose), the islet yield was only 44.4±8.3 IEQ and the islet was severely damaged. The minimum reduction of blood glucose of each formulation, such as insulin solution, microcrystal, and insulin microcrystal capsule, was shown to be 11.3, 11.0, and 16.3 mg/dl, respectively, at 6 h in fasting with diabetic rats. These results indicated that the administration of insulin formulations to the fasting groups increased the severe hypoglycemic effect of insulin action more than in non-fasting diabetic rats. The diabetic rat with fasting has a regulatory disorder in maintaining the blood glucose level. Accordingly, the validity of pharmacological availability as an optimal modeling of insulin formulations is best in non-fasting STZ-induced diabetic rats.  相似文献   

16.
Connecting peptide (C-peptide) is secreted along with insulin in equimolar amounts into portal circulation in response to beta cell stimulation. The biological function of C-peptide had been mostly limited to establishing the secondary and tertiary structure of proinsulin. Recent studies have suggested that C-peptide can impact several functions, such as autonomic and sensory nerve function, insulin secretion, and microvascular blood flow. In this study we examined the effects of C-peptide in the presence or absence of insulin on cardiovascular and sympathetic nerve activity in both normal and streptozotocin (STZ)-induced diabetic Wistar rats. Animals were made diabetic by a single intravenous injection of STZ (50 mg/kg) and maintained for 6 weeks. The diabetic animals had higher plasma glucose, lower plasma insulin, and C-peptide, compared with the normal animals. To characterize cardiovascular and autonomic nervous responses, the animals were anesthetized with urethane/alpha-chloralose and instrumented for the recording of mean arterial pressure (MAP), heart rate (HR), and lumbar sympathetic nerve activity (LSNA). A bolus administration of C-peptide alone did not alter MAP, HR, or LSNA in normal or diabetic animals. The bolus administration of insulin alone increased HR and LSNA in normal and diabetic animals. However, the administration of insulin plus C-peptide attenuated the increase in HR in normals and the increase in LSNA in diabetic rats. We concluded that the C-peptides play a role in modulating the insulin-stimulated sympathetic nerve response.  相似文献   

17.
Morphological and functional changes of rat pancreatic islets caused by administration of streptozotocin (STZ) and the bioavailability of insulin formulations administered to STZ-induced diabetic rats with fasting (12 h) or non-fasting were investigated. Islets isolated from normal rats maintained a good three-dimensional structure and the islet yield was 962.5+/-86.5 islet equivalent number (IEQ, islets converted to an average diameter of 150 microm). In the diabetic group (>500 mg/ml blood glucose), the islet yield was only 44.4+/-8.3 IEQ and the islet was severely damaged. The minimum reduction of blood glucose of each formulation, such as insulin solution, microcrystal, and insulin microcrystal capsule, was shown to be 11.3, 11.0, and 16.3 mg/dl, respectively, at 6 h in fasting with diabetic rats. These results indicated that the administration of insulin formulations to the fasting groups increased the severe hypoglycemic effect of insulin action more than in non-fasting diabetic rats. The diabetic rat with fasting has a regulatory disorder in maintaining the blood glucose level. Accordingly, the validity of pharmacological availability as an optimal modeling of insulin formulations is best in non-fasting STZ-induced diabetic rats.  相似文献   

18.
J.A.O. Ojewole   《Phytomedicine》2003,10(8):675-681
This study was undertaken to evaluate the hypoglycemic effect of Sclerocarya birrea [(A. Rich.) Hochst.] subspecies caffra (Sond.) Kokwaro [family: Anacardiaceae] stem-bark aqueous extract in normal (normoglycemic) and in streptozotocin (STZ)-treated, diabetic Wistar rats. In one set of experiments, graded doses of S. birrea stem-bark aqueous extract (SB, 100-800 mg/kg p.o.) were separately administered to groups of fasted normal and fasted diabetic rats. In another set of experiments, a single dose of the plant aqueous extract (SB, 800 mg/kg p.o.) was used. The hypoglycemic effect of this single dose (SB, 800 mg/kg p.o.) of S. birrea stem-bark aqueous extract was compared with that of chlorpropamide (250 mg/kg p.o.) in both fasted normal and fasted diabetic rats. Following acute treatment, relatively moderate to high doses of S. birrea stem-bark extract (SB, 100-800 mg/kg p.o.) produced dose-dependent, significant reductions (P < 0.05-0.001) in the blood glucose concentrations of both fasted normal and fasted diabetic rats. Chlorpropamide (250 mg/kg p.o.) also produced significant reductions (P < 0.05-0.001) in the blood glucose concentrations of the fasted normal and fasted diabetic rats. Administrations of the single dose of S. birrea stem-bark aqueous extract (SB, 800 mg/kg p.o.) significantly reduced (P 0.01 < 0.001) the blood glucose levels of both fasted normal (normoglycemic) and fasted STZ-treated, diabetic rats. The results of this experimental animal study indicate that aqueous extract of Sclerocarya birrea possesses hypoglycemic activity, and thus lend credence to the suggested folkloric use of the plant in the management and/or control of adult-onset, type-2 diabetes mellitus in some African communities.  相似文献   

19.
Belamcanda chinensis (Iridaceae) belongs to the family of iridaceae and its rhizoma has been widely used for the treatment of throat ailment. Here we report a new pharmacological activity of B. chinensis leaf extract (BCL), that is, the hypoglycemic effect in normal and STZ-induced diabetic rats. Animals either healthy or STZ-induced diabetic show significantly lowered fasting blood glucose levels after treatment with BCL. The serum insulin concentration in normal rats is also enhanced. Additionally, the increase in blood glucose levels after administration of various carbohydrates in normal rats is significantly decreased and the oral glucose tolerance (OGTT) of STZ-induced diabetic rats is largely improved by BCL treatment. However, co-administration of BCL with Nifedipine, a Ca2+ ion channel blocker, or Nicorandil, an ATP-sensitive K+ ion channel opener thoroughly abolishes the hypoglycemic effect of BCL. HPLC analysis and compound identification showed that several isoflavone glycosides with antidiabetic activities were contained in BCL while pharmacological experiment showed that the polysaccharide fraction of BCL had no significant hypoglycemic effect on normal rats. Therefore, the isoflavone glycosides but not polysaccharides might be the active fraction of BCL in diabetes treatment.  相似文献   

20.
Insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease that is characterized by selective destruction of insulin secreting pancreatic islets beta-cells. The formation of cytokines (IL-1beta, IL-6, TNF-alpha, etc.) leads to extensive morphological damage of beta-cells, DNA fragmentation, decrease of glucose oxidation, impaired glucose-insulin secretion and decreased insulin action and proinsulin biosynthesis. We examined the protective effect of a 1,4-dihydropyridine (DHP) derivative cerebrocrast (synthesized in the Latvian Institute of Organic Synthesis) on pancreatic beta-cells in rats possessing diabetes induced with the autoimmunogenic compound streptozotocin (STZ). Cerebrocrast administration at doses of 0.05 and 0.5 mg/kg body weight (p.o.) 1 h or 3 days prior to STZ as well as at 24 and 48 h after STZ administration partially prevented pancreatic beta-cells from the toxic effects of STZ, and delayed the development of hyperglycaemia. Administration of cerebrocrast starting 48 h after STZ-induced diabetes in rats for 3 consecutive days at doses of 0.05 and 0.5 mg/kg body weight (p.o.) significantly decreased blood glucose level, and the effect remained 10 days after the last administration. Moreover, in these rats, cerebrocrast evoked an increase of serum immunoreactive insulin (IRI) level during 7 diabetic days as compared to both the control normal rats and the STZ-induced diabetic control rats. The STZ-induced diabetic rats that received cerebrocrast had a significantly high serum IRI level from the 14th to 21st diabetic days in comparison with the STZ-induced diabetic control.The IRI level in serum as well as the glucose disposal rate were significantly increased after stimulation of pancreatic beta-cells with glucose in normal rats that received cerebrocrast, administered 60 min before glucose. Glucose disposal rate in STZ-induced diabetic rats as a result of cerebrocrast administration was also increased in comparison with STZ-diabetic control rats. Administration of cerebrocrast in combination with insulin intensified the effect of insulin. The hypoglycaemic effect of cerebrocrast primarily can be explained by its immunomodulative properties. Moreover, cerebrocrast can act through extrapancreatic mechanisms that favour the expression of glucose transporters, de novo insulin receptors formation in several cell membranes as well as glucose uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号