首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Development of high‐performance donor–acceptor (D–A) copolymers is vital in the research of polymer solar cells (PSCs). In this work, a low‐bandgap D–A copolymer based on dithieno[3,2‐b:2′,3′‐d]pyridin‐5(4H)‐one unit (DTP), PDTP4TFBT, is developed and used as the donor material for PSCs with PC71BM or ITIC as the acceptor. PDTP4TFBT:PC71BM and PDTP4TFBT:ITIC solar cells give power conversion efficiencies (PCEs) up to 8.75% and 7.58%, respectively. 1,8‐Diiodooctane affects film morphology and device performance for fullerene and nonfullerene solar cells. It inhibits the active materials from forming large domains and improves PCE for PDTP4TFBT:PC71BM cells, while it promotes the aggregation and deteriorates performance for PDTP4TFBT:ITIC cells. The ternary‐blend cells based on PDTP4TFBT:PC71BM:ITIC (1:1.2:0.3) give a decent PCE of 9.20%.  相似文献   

2.
Nonfullerene polymer solar cells (PSCs) are fabricated by using one wide bandgap donor PBDB‐T and one ultranarrow bandgap acceptor IEICO‐4F as the active layers. One medium bandgap donor PTB7‐Th is selected as the third component due to the similar highest occupied molecular orbital level compared to that of PBDB‐T and their complementary absorption spectra. The champion power conversion efficiency (PCE) of PSCs is increased from 10.25% to 11.62% via incorporating 20 wt% PTB7‐Th in donors, with enhanced short‐circuit current (JSC) of 24.14 mA cm?2 and fill factor (FF) of 65.03%. The 11.62% PCE should be the highest value for ternary nonfullerene PSCs. The main contribution of PTB7‐Th can be summarized as the improved photon harvesting and enhanced exciton utilization of PBDB‐T due to the efficient energy transfer from PBDB‐T to PTB7‐Th. Meanwhile, PTB7‐Th can also act as a regulator to adjust PBDB‐T molecular arrangement for optimizing charge transport, resulting in the enhanced FF of ternary PSCs. This experimental result may provide new insight for developing high‐performance ternary nonfullerene PSCs by selecting two well‐compatible donors with different bandgap and one ultranarrow bandgap acceptor.  相似文献   

3.
Polymer solar cells (PSCs) are fabricated without solvent additives using a low‐bandgap polymer, PBDTTT‐C‐T, as the donor and [6,6]‐phenyl‐C61‐butyric‐acid‐methyl‐ester (PC61BM) as the acceptor. Donor‐acceptor blend and layer‐by‐layer (LL) solution process are used to form active layers. Relative to the blend devices, the LL devices exhibit stronger absorption, better vertical phase separation, higher hole and electron mobilities, and better charge extraction at correct electrodes. As a result, after thermal annealing the LL devices exhibit an average power conversion efficiency (PCE) of 6.86%, which is much higher than that of the blend devices (4.31%). The best PCE of the LL devices is 7.13%, which is the highest reported for LL processed PSCs and among the highest reported for PC61BM‐based single‐junction PSCs.  相似文献   

4.
A new n‐type organic semiconductor (n‐OS) acceptor IDTPC with n‐hexyl side chains is developed. Compared to side chains with 4‐hexylphenyl counterparts (IDTCN), such a design endows the acceptor of IDTPC with higher electron mobility, more ordered face‐on molecular packing, and lower band gap. Therefore, the IDTPC‐based polymer solar cells (PSCs) with a newly developed wide bandgap polymer PTQ10 as donor exhibit the maximum power conversion efficiency (PCE) of 12.2%, a near 65% improvement in PCE relative to the IDTCN‐based control device. Most importantly, the IDTPC‐based device is insensitive to the thickness of the active layer from 70 to 505 nm, which still gives a PCE of 10.0% with the active‐layer thickness of 400 nm. To the best of the authors' knowledge, a PCE of 10.0% is the highest value for the nonfullerene PSCs with an active layer thicker than 400 nm. These results reveal that the blend of PTQ10 and IDTPC exhibits great potential for highly efficient nonfullerene PSCs and large‐area device fabrication.  相似文献   

5.
To realize high power conversion efficiencies (PCEs) in green‐solvent‐processed all‐polymer solar cells (All‐PSCs), a long alkyl chain modified perylene diimide (PDI)‐based polymer acceptor PPDIODT with superior solubility in nonhalogenated solvents is synthesized. A properly matched PBDT‐TS1 is selected as the polymer donor due to the red‐shifted light absorption and low‐lying energy level in order to achieve the complementary absorption spectrum and matched energy level between polymer donor and polymer acceptor. By utilizing anisole as the processing solvent, an optimal efficiency of 5.43% is realized in PBDT‐TS1/PPDIODT‐based All‐PSC with conventional configuration, which is comparable with that of All‐PSCs processed by the widely used binary solvent. Due to the utilization of an inverted device configuration, the PCE is further increased to over 6.5% efficiency. Notably, the best‐performing PCE of 6.58% is the highest value for All‐PSCs employing PDI‐based polymer acceptors and green‐solvent‐processed All‐PSCs. The excellent photovoltaic performance is mainly attributed to a favorable vertical phase distribution, a higher exciton dissociation efficiency (Pdiss) in the blend film, and a higher electrode carrier collection efficiency. Overall, the combination of rational molecular designing, material selection, and device engineering will motivate the efficiency breakthrough in green‐solvent‐processed All‐PSCs.  相似文献   

6.
In this study, a wavelength selective semitransparent polymer solar cell (ST‐PSC) with a proper transmission spectrum for plant growth is proposed for greenhouse applications. A ternary strategy combining a wide bandgap polymer donor with a near‐infrared absorbing nonfullerene acceptor and a high electron mobility fullerene acceptor is introduced to achieve PSCs with power conversion efficiency (PCE) over 10%. The addition of PC71BM into J52:IEICO‐4F binary blend contributes to the suppressed trap‐assisted recombination, enhanced charge extraction, and improved open‐circuit voltage simultaneously. ST‐PSC based on the J52:IEICO‐4F:PC71BM ternary blend shows an optimized performance with PCE of 7.75% and a defined crop growth factor of 24.8%. Such high‐performance ST‐PSC is achieved by carefully engineering the absorption spectrum of the light harvesting materials. As a result, the transmission spectra of the semitransparent devices are well‐matched with the absorption spectra of the photoreceptors, such as chlorophylls, in green plants, which provides adequate lighting conditions for photosynthesis and plant growth, and therefore making it a competitive candidate for photovoltaic greenhouse applications.  相似文献   

7.
Photovoltaic performance of polymer solar cells based on poly(3‐hexylthiophene) (P3HT) as the donor and indene‐C70 bisadduct (IC70BA) as the acceptor is improved by adding 3 vol% 3‐methylthiophene (MT) or 3‐hexylthiophene (HT) as processing additives. The results of UV‐vis absorption spectroscopy, X‐ray diffraction analysis and atomic force microscopy indicate that with the MT or HT processing additive, the active layer of the blend of P3HT/IC70BA showed strengthened absorbance, enhanced crystallinity and improved film morphology. The power conversion efficiency (PCE) of the PSCs was improved from 5.80% for the device without the additive to 6.35% for the device with HT additive and to 6.69% with MT additive. The PCE of 6.69% is the top value reported so far for the PSCs based on P3HT.  相似文献   

8.
Side‐chain engineering is an important strategy for optimizing photovoltaic properties of organic photovoltaic materials. In this work, the effect of alkylsilyl side‐chain structure on the photovoltaic properties of medium bandgap conjugated polymer donors is studied by synthesizing four new polymers J70 , J72 , J73 , and J74 on the basis of highly efficient polymer donor J71 by changing alkyl substituents of the alkylsilyl side chains of the polymers. And the photovoltaic properties of the five polymers are studied by fabricating polymer solar cells (PSCs) with the polymers as donor and an n‐type organic semiconductor (n‐OS) m‐ITIC as acceptor. It is found that the shorter and linear alkylsilyl side chain could afford ordered molecular packing, stronger absorption coefficient, higher charge carrier mobility, thus results in higher Jsc and fill factor values in the corresponding PSCs. While the polymers with longer or branched alkyl substituents in the trialkylsilyl group show lower‐lying highest occupied molecular orbital energy levels which leads to higher Voc of the PSCs. The PSCs based on J70 :m‐ITIC and J71 :m‐ITIC achieve power conversion efficiency (PCE) of 11.62 and 12.05%, respectively, which are among the top values of the PSCs reported in the literatures so far.  相似文献   

9.
Interfacial studies and band alignment engineering on the electron transport layer (ETL) play a key role for fabrication of high‐performance perovskite solar cells (PSCs). Here, an amorphous layer of SnO2 (a‐SnO2) between the TiO2 ETL and the perovskite absorber is inserted and the charge transport properties of the device are studied. The double‐layer structure of TiO2 compact layer (c‐TiO2) and a‐SnO2 ETL leads to modification of interface energetics, resulting in improved charge collection and decreased carrier recombination in PSCs. The optimized device based on a‐SnO2/c‐TiO2 ETL shows a maximum power conversion efficiency (PCE) of 21.4% as compared to 19.33% for c‐TiO2 based device. Moreover, the modified device demonstrates a maximum open‐circuit voltage (Voc) of 1.223 V with 387 mV loss in potential, which is among the highest reported value for PSCs with negligible hysteresis. The stability results show that the device on c‐TiO2/a‐SnO2 retains about 91% of its initial PCE value after 500 h light illumination, which is higher than pure c‐TiO2 (67%) based devices. Interestingly, using a‐SnO2/c‐TiO2 ETL the PCE loss was only 10% of initial value under continuous UV light illumination after 30 h, which is higher than that of c‐TiO2 based device (28% PCE loss).  相似文献   

10.
Highly efficient tandem and semitransparent (ST) polymer solar cells utilizing the same donor polymer blended with [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) as active layers are demonstrated. A high power conversion efficiency (PCE) of 8.5% and a record high open‐circuit voltage of 1.71 V are achieved for a tandem cell based on a medium bandgap polymer poly(indacenodithiophene‐co‐phananthrene‐quinoxaline) (PIDT‐phanQ). In addition, this approach can also be applied to a low bandgap polymer poly[2,6‐(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b′]dithiophene)‐alt‐4,7‐(5‐fluoro‐2,1,3‐benzothia‐diazole)] (PCPDTFBT), and PCEs up to 7.9% are achieved. Due to the very thin total active layer thickness, a highly efficient ST tandem cell based on PIDT‐phanQ exhibits a high PCE of 7.4%, which is the highest value reported to date for a ST solar cell. The ST device also possesses a desirable average visible transmittance (≈40%) and an excellent color rendering index (≈100), permitting its use in power‐generating window applications.  相似文献   

11.
The record efficiency of the state‐of‐the‐art polymer solar cells (PSCs) is rapidly increasing, due to the discovery of high‐performance photoactive donor and acceptor materials. However, strong questions remain as to whether such high‐efficiency PSCs can be produced by scalable processes. This paper reports a high power conversion efficiency (PCE) of 13.5% achieved with single‐junction ternary PSCs based on PTB7‐Th, PC71BM, and COi8DFIC fabricated by slot‐die coating, which shows the highest PCE ever reported in PSCs fabricated by a scalable process. To understand the origin of the high performance of the slot‐die coated device, slot‐die coated photoactive films and devices are systematically investigated. These results indicate that the good performance of the slot‐die PSCs can be due to a favorable molecule‐structure and film‐morphology change by introducing 1,8‐diiodooctane and heat treatment, which can lead to improved charge transport with reduced carrier recombination. The optimized condition is then used for the fabrication of large‐area modules and also for roll‐to‐roll fabrication. The slot‐die coated module with 30 cm2 active‐area and roll‐to‐roll produced flexible PSC has shown 8.6% and 9.6%, respectively. These efficiencies are the highest in each category and demonstrate the strong potential of the slot‐die coated ternary system for commercial applications.  相似文献   

12.
All‐polymer solar cells (all‐PSCs) are attractive as alternatives to fabricate thermally and mechanically stable solar cells, especially with recent improvements in their power conversion efficiency (PCE). In this work, efficient all‐PSCs with near‐infrared response (up to 850 nm) are developed using newly designed regioregular polymer donors with relatively narrow optical gap. These all‐PSCs systems achieve PCEs up to 6.0% after incorporating fluorine into the polymer backbone. More importantly, these polymers exhibit absorbance that is complementary to previously reported wide bandgap polymer donors. Thus, the superior properties of the newly designed polymers afford opportunities to fabricate the first spectrally matched all‐polymer tandem solar cells with high performance. A PCE of 8.3% is then demonstrated which is the highest efficiency so far for all‐polymer tandem solar cells. The design of narrow bandgap polymers provides new directions to enhance the PCE of emerging single‐junction and tandem all polymer solar cells.  相似文献   

13.
In very recent years, growing efforts have been devoted to the development of all‐polymer solar cells (all‐PSCs). One of the advantages of all‐PSCs over the fullerene‐based PSCs is the versatile design of both donor and acceptor polymers which allows the optimization of energy levels to maximize the open‐circuit voltage (Voc). However, there is no successful example of all‐PSCs with both high Voc over 1 V and high power conversion efficiency (PCE) up to 8% reported so far. In this work, a combination of a donor polymer poly[4,8‐bis(5‐(2‐octylthio)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(5‐(2‐ethylhexyl)‐4H‐thieno[3,4‐c]pyrrole‐4,6(5H)‐dione)‐1,3‐diyl] (PBDTS‐TPD) with a low‐lying highest occupied molecular orbital level and an acceptor polymer poly[[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐thiophene‐2,5‐diyl] (PNDI‐T) with a high‐lying lowest unoccupied molecular orbital level is used, realizing high‐performance all‐PSCs with simultaneously high Voc of 1.1 V and high PCE of 8.0%, and surpassing the performance of the corresponding PC71BM‐based PSCs. The PBDTS‐TPD:PNDI‐T all‐PSCs achieve a maximum internal quantum efficiency of 95% at 450 nm, which reveals that almost all the absorbed photons can be converted into free charges and collected by electrodes. This work demonstrates the advantages of all‐PSCs by incorporating proper donor and acceptor polymers to boost both Voc and PCEs.  相似文献   

14.
Formamidinium (FA)‐based 3D perovskite solar cells (PSCs) have been widely studied and they show reduced bandgap, enhanced stability, and improved efficiency compared to MAPbI3‐based devices. Nevertheless, the FA‐based spacers have rarely been studied for 2D Ruddlesden–Popper (RP) perovskites, which have drawn wide attention due to their enormous potential for fabricating efficient and stable photovoltaic devices. Here, for the first time, FA‐based derivative, 2‐thiopheneformamidinium (ThFA), is successfully synthesized and employed as an organic spacer for 2D RP PSCs. A precursor organic salts‐assisted crystal growth technique is further developed to prepare high quality 2D (ThFA)2(MA)n?1PbnI3n+1 (nominal n = 3) perovskite films, which shows preferential vertical growth orientations, high charge carrier mobilities, and reduced trap density. As a result, the 2D RP PSCs with an inverted planar p‐i‐n structure exhibit a dramatically improved power conversion efficiency (PCE) from 7.23% to 16.72% with negligible hysteresis, which is among the highest PCE in 2D RP PSCs with low nominal n‐value of 3. Importantly, the optimized 2D PSCs exhibit a dramatically improved stability with less than 1% degradation after storage in N2 for 3000 h without encapsulation. These findings provide an effective strategy for developing FA‐based organic spacers toward highly efficient and stable 2D PSCs.  相似文献   

15.
Newly developed benzo[1,2‐b:4,5‐b′]dithiophene (BDT) block with 3,4‐ethylenedioxythiophene (EDOT) side chains is first employed to build efficient photovoltaic copolymers. The resulting copolymers, PBDTEDOT‐BT and PBDTEDOTFBT, have a large bandgap more than 1.80 eV, which is attributed to the increased steric hindrance between the BDT and EDOT skeletons. Both copolymers possess the satisfied absorptions, low‐lying highest occupied molecular orbital (HOMO) levels and high crystallinity. Using the fluorination strategy, PBDTEDOT‐FBT exhibits a wider and stronger absorption and a deeper HOMO level than those of PBDTEDOT‐BT. PBDTEDOT‐FBT:[6,6]‐Phenyl C71 butyric acid methyl ester (PC71BM) blend also shows the higher hole mobility and better surface morphology compared with the PBDTEDOTBT:PC71BM blend. Combination of above advantages, PBDTEDOT‐FBT devices exhibit much higher power conversion efficiency (PCE) of 10.11%, with an improved open circuit voltage (Voc) of 0.86 V, short circuit current densities (Jsc) of 16.01 mA cm?2, and fill factor (FF) of 72.6%. This work not only provides a newly efficient candidate of BDT donor block modified with EDOT conjugated side chains, but also achieves high‐performance large bandgap copolymers for polymer solar cells (PSCs) via the synergistic effect of fluorination and side chain engineering strategies.  相似文献   

16.
Recently, considerable progress is achieved in lab prototype perovskite solar cells (PSCs); however, the stability of outdoor applications of PSCs remains a challenge due to the high sensitivity of perovskite material under moist and ultraviolet (UV) light conditions. In this work, the UV photostability of PSC devices is improved by incorporating a photon downshifting layer—SrAl2O4: Eu2+, Dy3+ (SAED)—prepared using the pulsed laser deposition approach. Light‐induced deep trap states in the photoactive layer are depressed, and UV light‐induced device degradation is inhibited after the SAED modification. Optimized power conversion efficiency (PCE) of 17.8% is obtained through the enhanced light harvesting and reduced carrier recombination provided by SAED. More importantly, a solar energy storage effect due to the long‐persistent luminescence of SAED is obtained after light illumination is turned off. The introduction of downconverting material with long‐persistent luminescence in PSCs not only represents a new strategy to improve PCE and light stability by photoconversion from UV to visible light but also provides a new paradigm for solar energy storage.  相似文献   

17.
The high thermal stability and facile synthesis of CsPbI2Br all‐inorganic perovskite solar cells (AI‐PSCs) have attracted tremendous attention. As far as electron‐transporting layers (ETLs) are concerned, low temperature processing and reduced interfacial recombination centers through tunable energy levels determine the feasibility of the perovskite devices. Although the TiO2 is the most popular ETL used in PSCs, its processing temperature and moderate electron mobility hamper the performance and feasibility. Herein, the highly stable, low‐temperature processed MgZnO nanocrystal‐based ETLs for dynamic hot‐air processed Mn2+ incorporated CsPbI2Br AI‐PSCs are reported. By holding its regular planar “n–i–p” type device architecture, the MgZnO ETL and poly(3‐hexylthiophene‐2,5‐diyl) hole transporting layer, 15.52% power conversion efficiency (PCE) is demonstrated. The thermal‐stability analysis reveals that the conventional ZnO ETL‐based AI‐PSCs show a serious instability and poor efficiency than the Mg2+ modified MgZnO ETLs. The photovoltaic and stability analysis of this improved photovoltaic performance is attributed to the suitable wide‐bandgap, low ETL/perovskite interface recombination, and interface stability by Mg2+ doping. Interestingly, the thermal stability analysis of the unencapsulated AI‐PSCs maintains >95% of initial PCE more than 400 h at 85 °C for MgZnO ETL, revealing the suitability against thermal degradation than conventional ZnO ETL.  相似文献   

18.
CsPbI2Br is emerging as a promising all‐inorganic material for perovskite solar cells (PSCs) due to its more stable lattice structure and moisture resistance compared to CsPbI3, although its device performance is still much behind this counterpart. Herein, a preannealing process is developed and systematically investigated to achieve high‐quality CsPbI2Br films by regulating the nucleation and crystallization of perovskite. The preannealing temperature and time are specifically optimized for a dopant‐free poly(3‐hexylthiophene) (P3HT)‐based device to target dopant‐induced drastic performance degradation for spiro‐OMeTAD‐based devices. The resulting P3HT‐based device exhibits comparable power conversion efficiency (PCE) to spiro‐OMeTAD‐based devices but much enhanced ambient stability with over 95% PCE after 1300 h. A diphenylamine derivative is introduced as a buffer layer to improve the energy‐level mismatch between CsPbI2Br and P3HT. A record‐high PCE of 15.50% for dopant‐free P3HT‐based CsPbI2Br PSCs is achieved by alleviating the open‐circuit voltage loss with the buffer layer. These results demonstrate that the preannealing processing together with a suitable buffer layer are applicable strategies for developing dopant‐free P3HT PSCs with high efficiency and stability.  相似文献   

19.
In this study the thickness of the PTB7‐Th:PC71BM bulk heterojunction (BHJ) film and the PF3N‐2TNDI electron transport layer (ETL) is systematically tuned to achieve polymer solar cells (PSCs) with optimized power conversion efficiency (PCE) of over 9% when an ultrathin BHJ of 50 nm is used. Optical modeling suggests that the high PCE is attributed to the optical spacer effect from the ETL, which not only maximizes the optical field within the BHJ film but also facilitates the formation of a more homogeneously distributed charge generation profile across the BHJ film. Experimentally it is further proved that the extra photocurrent produced at the PTB7‐Th/PF3N‐2TNDI interface also contributes to the improved performance. Taking advantage of this high performance thin film device structure, one step further is taken to fabricate semitransparent PSCs (ST‐PSCs) by using an ultrathin transparent Ag cathode to replace the thick Ag mirror cathode, yielding a series of high performance ST‐PSCs with PCEs over 6% and average visible transmittance between 20% and 30%. These ST‐PSCs also possess remarkable transparency color perception and rendering properties, which are state‐of‐the‐art and fulfill the performance criteria for potential use as power‐generating windows in near future.  相似文献   

20.
A new 2D‐conjugated medium bandgap donor–acceptor copolymer, J81 , based on benzodifuran with trialkylsilyl thiophene side chains as donor unit and fluorobenzothiazole as acceptor, is synthesized and successfully used in nonfullerene polymer solar cells (PSCs) with low bandgap n‐type organic semiconductor (n‐OS) 3,9‐bis(2‐methylene‐ (3‐(1,1‐dicyanomethylene)‐indanone)‐5,5,11,11‐tetrakis(4‐ hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]‐ dithiophene (ITIC) and m ‐ITIC as acceptor. J81 possesses a lower‐lying highest occupied molecular orbital (HOMO) energy level of ?5.43 eV and medium bandgap of 1.93 eV with complementary absorption in the visible–near infrared region with the n‐OS acceptor. The PSCs based on J81 :ITIC and J81 :m ‐ITIC yield high power conversion efficiency of 10.60% and 11.05%, respectively, with high V oc of 0.95–0.96 V benefit from the lower‐lying HOMO energy level of J81 donor. The work indicates that J81 is another promising polymer donor for the nonfullerene PSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号