首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The limits of maximizing the open‐circuit voltage Voc in solar cells based on poly[2,7‐(9,9‐didecylfluorene)‐alt‐5,5‐(4,7‐di‐2‐thienyl‐2,1,3‐benzothiadiazole)] (PF10TBT) as a donor using different fullerene derivatives as acceptor are investigated. Bulk heterojunction solar cells with PF10TBT and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) give a Voc over 1 V and a power conversion efficiency of 4.2%. Devices in which PF10TBT is blended with fullerene bisadduct derivatives give an even higher Voc, but also a strong decrease in short circuit current (Jsc). The higher Voc is attributed to the higher LUMO of the acceptors in comparison to PCBM. By investigating the photophysics of PF10TBT:fullerene blends using near‐IR photo‐ and electroluminescence, time‐resolved photoluminescence, and photoinduced absorption we find that the charge transfer (CT) state is not formed efficiently when using fullerene bisadducts. Hence, engineering acceptor materials with a LUMO level that is as high as possible can increase Voc, but will only provide a higher power conversion efficiency, when the quantum efficiency for charge transfer is preserved. To quantify this, we determine the CT energy (ECT) and optical band gap (Eg), defined as the lowest first singlet state energy ES1 of either the donor or acceptor, for each of the blends and find a clear correlation between the free energy for photoinduced electron transfer and Jsc. We find that Eg ? qVoc > 0.6 eV is a simple, but general criterion for efficient charge generation in donor‐acceptor blends.  相似文献   

2.
The morphology, photophysics, and device performance of solar cells based on the low bandgap polymer poly[[2,6′‐4,8‐di(5‐ethylhexylthienyl)benzo[1,2‐b;3,3‐b]dithiophene]3‐fluoro‐2[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl (PBDTTT‐EFT) (also known as PTB7‐Th) blended with different fullerene acceptors: Phenyl‐C61‐butyric acid methyl ester (PC61BM), phenyl‐C71 ‐butyric acid methyl ester (PC71BM), or indene‐C60 bisadduct (ICBA) are correlated. Compared to PC71 BM‐based cells – which achieve a power conversion efficiency (PCE) of 9.4% – cells using ICBA achieve a higher open‐circuit voltage (VOC) of 1.0 V albeit with a lower PCE of 7.1%. To understand the origin of this lower PCE, the morphology and photophysics have been thoroughly characterized. Hard and soft X‐ray scattering measurements reveal that the PBDTTT‐EFT:ICBA blend has a lower crystallinity, lower domain purity, and smaller domain size compared to the PBDTTT‐EFT:PC71BM blend. Incomplete photoluminescence quenching is also found in the ICBA blend with transient absorption measurements showing faster recombination dynamics at short timescales. Transient photovoltage measurements highlight further differences in recombination at longer timeframes due to the more intermixed morphology of the ICBA blend. Interestingly, a mild thermal treatment improves the performance of PBDTTT‐EFT:ICBA cells which is exploited in the fabrication of a homo PBDTTT‐EFT:ICBA tandem solar cell with PCE of 9.0% and VOC of 1.93 V.  相似文献   

3.
For 19 diketopyrrolopyrrole polymers, the highest occupied molecular orbital (HOMO) energies are determined from i) the oxidation potential with square‐wave voltammetry (SWV), ii) the ionization potential using ultraviolet photoelectron spectroscopy (UPS), and iii) density functional theory (DFT) calculations. The SWV HOMO energies show an excellent linear correlation with the open‐circuit voltage (Voc) of optimized solar cells in which the polymers form blends with a fullerene acceptor ([6,6]‐phenyl‐C61‐butyl acid methyl ester or [6,6]‐phenyl‐C71‐butyl acid methyl ester). Remarkably, the slope of the best linear fit is 0.75 ± 0.04, i.e., significantly less than unity. A weaker correlation with Voc is found for the HOMO energies obtained from UPS and DFT. Within the experimental error, the SWV and UPS data are correlated with a slope close to unity. The results show that electrochemically determined oxidation potentials provide an excellent method for predicting the Voc of bulk heterojunction solar cells, with absolute deviations less than 0.1 V.  相似文献   

4.
The use of fullerenes with two or more adducts as acceptors has been recently shown to enhance the performance of bulk‐heterojunction solar cells using poly(3‐hexylthiophene) (P3HT) as the donor. The enhancement is caused by a substantial increase in the open‐circuit voltage due to a rise in the fullerene lowest unoccupied molecular orbital (LUMO) level when going from monoadducts to multiadducts. While the increase in the open‐circuit voltage is obtained with many different polymers, most polymers other than P3HT show a substantially reduced photocurrent when blended with fullerene multiadducts like bis‐PCBM (bis adduct of Phenyl‐C61‐butyric acid methyl ester) or the indene C60 bis‐adduct ICBA. Here we investigate the reasons for this decrease in photocurrent. We find that it can be attributed partly to a loss in charge generation efficiency that may be related to the LUMO‐LUMO and HOMO‐HOMO (highest occupied molecular orbital) offsets at the donor‐acceptor heterojunction, and partly to reduced charge carrier collection efficiencies. We show that the P3HT exhibits efficient collection due to high hole and electron mobilities with mono‐ and multiadduct fullerenes. In contrast the less crystalline polymer Poly[[9‐(1‐octylnonyl)‐9H‐carbazole‐2,7‐diyl]‐2,5‐thiophenediyl‐2,1,3‐benzothiadiazole‐4,7‐diyl‐2,5‐thiophenediyl (PCDTBT) shows inefficient charge carrier collection, assigned to low hole mobility in the polymer and low electron mobility when blended with multiadduct fullerenes.  相似文献   

5.
Inverted perovskite solar cells (PSCs) with low‐temperature processed hole transporting materials (HTMs) suffer from poor performance due to the inferior hole‐extraction capability at the HTM/perovskite interfaces. Here, molecules with controlled electron affinity enable a HTM with conductivity improved by more than ten times and a decreased energy gap between the Fermi level and the valence band from 0.60 to 0.24 eV, leading to the enhancement of hole‐extraction capacity by five times. As a result, the 3,6‐difluoro‐2,5,7,7,8,8‐hexacyanoquinodimethane molecules are used for the first time enhancing open‐circuit voltage (Voc) and fill factor (FF) of the PSCs, which enable rigid‐and flexible‐based inverted perovskite devices achieving highest power conversion efficiencies of 22.13% and 20.01%, respectively. This new method significantly enhances the Voc and FF of the PSCs, which can be widely combined with HTMs based on not only NiOx but also PTAA, PEDOTT:PSS, and CuSCN, providing a new way of realizing efficient inverted PSCs.  相似文献   

6.
Perovskite‐organic tandem solar cells are attracting more attention due to their potential for highly efficient and flexible photovoltaic device. In this work, efficient perovskite‐organic monolithic tandem solar cells integrating the wide bandgap perovskite (1.74 eV) and low bandgap organic active PBDB‐T:SN6IC‐4F (1.30 eV) layer, which serve as the top and bottom subcell, respectively, are developed. The resulting perovskite‐organic tandem solar cells with passivated wide‐bandgap perovskite show a remarkable power conversion efficiency (PCE) of 15.13%, with an open‐circuit voltage (Voc) of 1.85 V, a short‐circuit photocurrent (Jsc) of 11.52 mA cm?2, and a fill factor (FF) of 70.98%. Thanks to the advantages of low temperature fabrication processes and the flexibility properties of the device, a flexible tandem solar cell which obtain a PCE of 13.61%, with Voc of 1.80 V, Jsc of 11.07 mA cm?2, and FF of 68.31% is fabricated. Moreover, to demonstrate the achieved high Voc in the tandem solar cells for potential applications, a photovoltaic (PV)‐driven electrolysis system combing the tandem solar cell and water splitting electrocatalysis is assembled. The integrated device demonstrates a solar‐to‐hydrogen efficiency of 12.30% and 11.21% for rigid, and flexible perovskite‐organic tandem solar cell based PV‐driven electrolysis systems, respectively.  相似文献   

7.
One of the most important factors that limits the efficiencies of bulk‐heterojunction organic solar cells (OSCs) is the modest open‐circuit voltage (Voc) due to their large voltage loss (Vloss) caused by significant nonradiative recombination loss. To boost the performance of OSCs toward their theoretical limit, developing high‐performance donor: acceptor systems featuring low Vloss with suppressed nonradiative recombination losses (<0.30 V) is desired. Herein, high performance OSCs based on a polymer donor benzodithiophene‐difluorobenzoxadiazole‐2‐decyltetradecyl (BDT‐ffBX‐DT) and perylenediimide‐based acceptors (PDI dimer with spirofluorene linker (SFPDI), PDI4, and PDI6) are reported which offer a high power conversion efficiency (PCE) of 7.5%, 56% external quantum efficiency associated with very high Voc (>1.10 V) and low Vloss (<0.60 V). A high Voc up to 1.23 V is achieved, which is among the highest values reported for OSCs with a PCE beyond 6%, to date. These attractive results are benefit from the suppressed nonradiative recombination voltage loss, which is as low as 0.20 V. This value is the lowest value for OSCs so far and is comparable to high performance crystalline silicon and perovskite solar cells. These results show that OSCs have the potential to achieve comparable Voc and voltage loss as inorganic photovoltaic technologies.  相似文献   

8.
Perovskite solar cells based on CH3NH3PbBr3 with a band gap of 2.3 eV are attracting intense research interests due to their high open‐circuit voltage (Voc) potential, which is specifically relevant for the use in tandem configuration or spectral splitting. Many efforts have been performed to optimize the Voc of CH3NH3PbBr3 solar cells; however, the limiting Voc (namely, radiative Voc:Voc,rad) and the corresponding ΔVoc (the difference between Voc,rad and Voc) mechanism are still unknown. Here, the average Voc of 1.50 V with the maximum value of 1.53 V at room temperature is achieved for a CH3NH3PbBr3 solar cell. External quantum efficiency measurements with electroluminescence spectroscopy determine the Voc,rad of CH3NH3PbBr3 cells with 1.95 V and a ΔVoc of 0.45 V at 295 K. When the temperature declines from 295 to 200 K, the obtained Voc remains comparably stable in the vicinity of 1.5 V while the corresponding ΔVoc values show a more significant increase. Our findings suggest that the Voc of CH3NH3PbBr3 cells is primarily limited by the interface losses induced by the charge extraction layer rather than by bulk dominated recombination losses. These findings are important for developing strategies how to further enhance the Voc of CH3NH3PbBr3‐based solar cells.  相似文献   

9.
High photon energy losses limit the open‐circuit voltage (VOC) and power conversion efficiency of organic solar cells (OSCs). In this work, an optimization route is presented which increases the VOC by reducing the interfacial area between donor (D) and acceptor (A). This optimization route concerns a cascade device architecture in which the introduction of discontinuous interlayers between alpha‐sexithiophene (α‐6T) (D) and chloroboron subnaphthalocyanine (SubNc) (A) increases the VOC of an α‐6T/SubNc/SubPc fullerene‐free cascade OSC from 0.98 V to 1.16 V. This increase of 0.18 V is attributed solely to the suppression of nonradiative recombination at the D–A interface. By accurately measuring the optical gap (Eopt) and the energy of the charge‐transfer state (ECT) of the studied OSC, a detailed analysis of the overall voltage losses is performed. EoptqVOC losses of 0.58 eV, which are among the lowest observed for OSCs, are obtained. Most importantly, for the VOC‐optimized devices, the low‐energy (700 nm) external quantum efficiency (EQE) peak remains high at 79%, despite a minimal driving force for charge separation of less than 10 meV. This work shows that low‐voltage losses can be combined with a high EQE in organic photovoltaic devices.  相似文献   

10.
While polymer acceptors are promising fullerene alternatives in the fabrication of efficient bulk heterojunction (BHJ) solar cells, the range of efficient material systems relevant to the “all‐polymer” BHJ concept remains narrow, and currently limits the perspectives to meet the 10% efficiency threshold in all‐polymer solar cells. This report examines two polymer acceptor analogs composed of thieno[3,4‐c ]pyrrole‐4,6‐dione (TPD) and 3,4‐difluorothiophene ([2F]T) motifs, and their BHJ solar cell performance pattern with a low‐bandgap polymer donor commonly used with fullerenes (PBDT‐TS1; taken as a model system). In this material set, the introduction of a third electron‐deficient motif, namely 2,1,3‐benzothiadiazole (BT), is shown to (i) significantly narrow the optical gap (E opt) of the corresponding polymer (by ≈0.2 eV) and (ii) improve the electron mobility of the polymer by over two orders of magnitude in BHJ solar cells. In turn, the narrow‐gap P2TPDBT[2F]T analog (E opt = 1.7 eV) used as fullerene alternative yields high open‐circuit voltages (V OC) of ≈1.0 V, notable short‐circuit current values (J SC) of ≈11.0 mA cm−2, and power conversion efficiencies (PCEs) nearing 5% in all‐polymer BHJ solar cells. P2TPDBT[2F]T paves the way to a new, promising class of polymer acceptor candidates.  相似文献   

11.
Organic ternary heterojunction photovoltaic blends are sometimes observed to undergo a gradual evolution in open‐circuit voltage (Voc) with increasing amounts of a second donor or an acceptor. The Voc is strongly correlated with the energy of the charge transfer state in the blend, but this value depends on both local and mesoscopic orders. In this work, the behavior of Voc in the presence of a wide range of interfacial electronic states is investigated. The key charge transfer state interfaces responsible for Voc in several model systems with varying morphology are identified. Systems consisting of one donor with two fullerene molecules and of one acceptor with a donor polymer of varying regio‐regularity are used. The effects from the changing energetic disorder in the material and from the variation due to a law of simple mixtures are quantified. It has been found that populating the higher‐energy charge transfer states is not responsible for the observed change in Voc upon the addition of a third component. Aggregating polymers and miscible fullerenes are compared, and it has been concluded that in both cases charge delocalization, aggregation, and local polarization effects shift the lowest‐energy charge transfer state distribution.  相似文献   

12.
Two narrow bandgap non‐fullerene acceptors (NBG‐NFAs), namely, COTIC‐4F and SiOTIC‐4F, are designed and synthesized for the fabrication of efficient near‐infrared organic solar cells (OSCs). The chemical structures of the NBG‐NFAs contain a D′‐D‐D′ electron‐rich internal core based on a cyclopentadithiophene (or dithienosilole) (D) and alkoxythienyl (D′) core, end‐capped with the highly electron‐deficient unit 2‐(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐inden‐1‐ylidene)malononitrile (A), ultimately providing a A‐D′‐D‐D′‐A molecular configuration that enhances the intramolecular charge transfer characteristics of the excited states. One can thereby reduce the optical bandgap (Egopt) to as low as ≈1.10 eV, one of the smallest values for NFAs reported to date. In bulk‐heterojunction (BHJ) OSCs, NBG‐NFA blends with the polymer donor PTB7‐Th yield power conversion efficiencies (PCE) of up to 9.0%, which is particularly high when compared against a range of NBG BHJ blends. Most significantly, it is found that, despite the small energy loss (Egopt ? eVOC) of 0.52 eV, the PTB7‐Th/NBG‐NFA bulk heterojunction blends can yield short‐circuit current densities of up to 22.8 mA cm?2, suggesting that the design and application of NBG‐NFA materials have substantial potential to further improve the PCE of OSCs.  相似文献   

13.
Current state‐of‐the‐art organic solar cells (OSCs) still suffer from high losses of open‐circuit voltage (VOC). Conventional polymer:fullerene solar cells usually exhibit bandgap to VOC losses greater than 0.8 V. Here a detailed investigation of VOC is presented for solution‐processed OSCs based on (6,5) single‐walled carbon nanotube (SWCNT): [6,6]‐phenyl‐C71‐butyric acid methyl ester active layers. Considering the very small optical bandgap of only 1.22 eV of (6,5) SWCNTs, a high VOC of 0.59 V leading to a low Egap/q ? VOC = 0.63 V loss is observed. The low voltage losses are partly due to the lack of a measurable charge transfer state and partly due to the narrow absorption edge of SWCNTs. Consequently, VOC losses attributed to a broadening of the band edge are very small, resulting in VOC,SQ ? VOC,rad = 0.12 V. Interestingly, this loss is mainly caused by minor amounts of SWCNTs with smaller bandgaps as well as (6,5) SWCNT trions, all of which are experimentally well resolved employing Fourier transform photocurrent spectroscopy. In addition, the low losses due to band edge broadening, a very low voltage loss are also found due to nonradiative recombination, ΔVOC,nonrad = 0.26 V, which is exceptional for fullerene‐based OSCs.  相似文献   

14.
Charge transport layers play an important role in determining the power conversion efficiencies (PCEs) of perovskite solar cells (PSCs). However, it has proven challenging to produce thin and compact charge transport layers via solution processing techniques. Herein, a hot substrate deposition method capable of improving the morphology of high‐coverage hole‐transport layers (HTLs) and electron‐transport layers (ETLs) is reported. PSC devices using HTLs deposited on a hot substrate show improvement in the open‐circuit voltage (Voc) from 1.041 to 1.070 V and the PCE from 17.00% to 18.01%. The overall device performance is then further enhanced with the hot substrate deposition of ETLs as the Voc and PCE reach 1.105 V and 19.16%, respectively. The improved performance can be explained by the decreased current leakage and series resistance, which are present in PSCs with rough and discontinuous HTLs and ETLs.  相似文献   

15.
Poly(benzo[1,2‐b:4,5‐b′]dithiophene–alt–thieno[3,4‐c]pyrrole‐4,6‐dione) (PBDTTPD) polymer donors with linear side‐chains yield bulk‐heterojunction (BHJ) solar cell power conversion efficiencies (PCEs) of about 4% with phenyl‐C71‐butyric acid methyl ester (PC71BM) as the acceptor, while a PBDTTPD polymer with a combination of branched and linear substituents yields a doubling of the PCE to 8%. Using transient optical spectroscopy it is shown that while the exciton dissociation and ultrafast charge generation steps are not strongly affected by the side chain modifications, the polymer with branched side chains exhibits a decreased rate of nongeminate recombination and a lower fraction of sub‐nanosecond geminate recombination. In turn the yield of long‐lived charge carriers increases, resulting in a 33% increase in short circuit current (J sc). In parallel, the two polymers show distinct grazing incidence X‐ray scattering spectra indicative of the presence of stacks with different orientation patterns in optimized thin‐film BHJ devices. Independent of the packing pattern the spectroscopic data also reveals the existence of polymer aggregates in the pristine polymer films as well as in both blends which trap excitons and hinder their dissociation.  相似文献   

16.
Two chemically tailored new conjugated copolymers, HSL1 and HSL2, were developed and applied as hole selective layers to improve the anode interface of fullerene/perovskite planar heterojunction solar cells. The introduction of polar functional groups on the polymer side chains increases the surface energy of the hole selective layers (HSLs), which promote better wetting with the perovskite films and lead to better films with full coverage and high crystallinity. The deep highest occupied molecular orbital levels of the HSLs align well with the valence band of the perovskite semiconductors, resulted in increase photovoltage. The high lying lowest unoccupied molecule orbital level provides sufficient electron blocking ability to prevent electrons from reaching the anode and reduces the interfacial trap‐assisted recombination at the poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)/perovskite interface, resulting in a longer charge‐recombination lifetime and shorter charge‐extraction time. In the presence of the HSLs, high‐performance CH3NH3PbI x Cl3? x perovskite solar cells with a power conversion efficiency (PCE) of 16.6% (V oc: 1.07 V) and CH3NH3Pb(I0.3Br0.7) x Cl3? x cells with a PCE of 10.3% (V oc: 1.34 V) can be realized.  相似文献   

17.
One of the factors limiting the performance of organic solar cells (OSCs) is their large energy losses (E loss) in the conversion from photons to electrons, typically believed to be around 0.6 eV and often higher than those of inorganic solar cells. In this work, a novel low band gap polymer PIDTT‐TID with a optical gap of 1.49 eV is synthesized and used as the donor combined with PC71BM in solar cells. These solar cells attain a good power conversion efficiency of 6.7% with a high open‐circuit voltage of 1.0 V, leading to the E loss as low as 0.49 eV. A systematic study indicates that the driving force in this donor and acceptor system is sufficient for charge generation with the low E loss. This work pushes the minimal E loss of OSCs down to 0.49 eV, approaching the values of some inorganic and hybrid solar cells. It indicates the potential for further enhancement of the performance of OSCs by improving their V oc since the E loss can be minimized.  相似文献   

18.
The bulk heterojunction (BHJ) solar cell performance of many polymers depends on the polymer molecular weight (M n) and the solvent additive(s) used for solution processing. However, the mechanism that causes these dependencies is not well understood. This work determines how M n and solvent additives affect the performance of BHJ solar cells made with the polymer poly(di(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene‐co‐octylthieno[3,4‐c]pyrrole‐4,6‐dione) (PBDTTPD). Low M n PBDTTPD devices have exceedingly large fullerene‐rich domains, which cause extensive charge‐carrier recombination. Increasing the M n of PBDTTPD decreases the size of these domains and significantly improves device performance. PBDTTPD aggregation in solution affects the size of the fullerene‐rich domains and this effect is linked to the dependency of PBDTTPD solubility on M n. Due to its poor solubility high M n PBDTTPD quickly forms a fibrillar polymer network during spin‐casting and this network acts as a template that prevents large‐scale phase separation. Furthermore, processing low M n PBDTTPD devices with a solvent additive improves device performance by inducing polymer aggregation in solution and preventing large fullerene‐rich domains from forming. These findings highlight that polymer aggregation in solution plays a significant role in determining the morphology and performance of BHJ solar cells.  相似文献   

19.
In very recent years, growing efforts have been devoted to the development of all‐polymer solar cells (all‐PSCs). One of the advantages of all‐PSCs over the fullerene‐based PSCs is the versatile design of both donor and acceptor polymers which allows the optimization of energy levels to maximize the open‐circuit voltage (Voc). However, there is no successful example of all‐PSCs with both high Voc over 1 V and high power conversion efficiency (PCE) up to 8% reported so far. In this work, a combination of a donor polymer poly[4,8‐bis(5‐(2‐octylthio)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(5‐(2‐ethylhexyl)‐4H‐thieno[3,4‐c]pyrrole‐4,6(5H)‐dione)‐1,3‐diyl] (PBDTS‐TPD) with a low‐lying highest occupied molecular orbital level and an acceptor polymer poly[[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐thiophene‐2,5‐diyl] (PNDI‐T) with a high‐lying lowest unoccupied molecular orbital level is used, realizing high‐performance all‐PSCs with simultaneously high Voc of 1.1 V and high PCE of 8.0%, and surpassing the performance of the corresponding PC71BM‐based PSCs. The PBDTS‐TPD:PNDI‐T all‐PSCs achieve a maximum internal quantum efficiency of 95% at 450 nm, which reveals that almost all the absorbed photons can be converted into free charges and collected by electrodes. This work demonstrates the advantages of all‐PSCs by incorporating proper donor and acceptor polymers to boost both Voc and PCEs.  相似文献   

20.
“The Same‐Acceptor‐Strategy” (SAS) adopts benzotriazole (BTA)‐based p‐type polymers paired with a new BTA based non‐fullerene acceptor BTA13 to minimize the trade‐off between the open‐circuit voltage (VOC) and short circuit current (JSC). The fluorination and sulfuration are introduced to lower the highest occupied molecular orbitals (HOMO) of the polymers. The fluorinated polymer of J52‐F shows the higher power conversion efficiency (PCE) of 8.36% than the analog polymer of J52, benefited from a good balance between an improved VOC of 1.18 V and a JSC of 11.55 mA cm?2. Further adding alkylthio groups on J52‐F, the resulted polymer, J52‐FS, exhibits the highest VOC of 1.24 V with a decreased energy loss of 0.48 eV, compared with 0.67 eV for J52 and 0.54 eV for J52‐F. However, J52‐FS shows an inferior PCE (3.84%) with a lower JSC of 6.74 mA cm?2, because the small ΔEHOMO between J52‐FS and BTA13 (0.02 eV) gives rise to the inefficient hole transfer and high charge recombination, as well as low carrier mobilities. The results of this study clearly demonstrate that the introduction of different atoms in p‐type polymers is effective to improve the SAS and realize the high (VOC) and PCE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号