首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Interplay Between Side Chain Pattern,Polymer Aggregation,and Charge Carrier Dynamics in PBDTTPD:PCBM Bulk‐Heterojunction Solar Cells
Authors:Clare Dyer‐Smith  Ian A Howard  Clément Cabanetos  Abdulrahman El Labban  Pierre M Beaujuge  Frédéric Laquai
Institution:1. Max Planck Research Group for Organic Optoelectronics, Max Planck Institute for Polymer Research, Mainz, Germany;2. Chemical Sciences and Materials Science and Engineering, Division of Physical Sciences & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
Abstract:Poly(benzo1,2‐b:4,5‐b′]dithiophene–alt–thieno3,4‐c]pyrrole‐4,6‐dione) (PBDTTPD) polymer donors with linear side‐chains yield bulk‐heterojunction (BHJ) solar cell power conversion efficiencies (PCEs) of about 4% with phenyl‐C71‐butyric acid methyl ester (PC71BM) as the acceptor, while a PBDTTPD polymer with a combination of branched and linear substituents yields a doubling of the PCE to 8%. Using transient optical spectroscopy it is shown that while the exciton dissociation and ultrafast charge generation steps are not strongly affected by the side chain modifications, the polymer with branched side chains exhibits a decreased rate of nongeminate recombination and a lower fraction of sub‐nanosecond geminate recombination. In turn the yield of long‐lived charge carriers increases, resulting in a 33% increase in short circuit current (J sc). In parallel, the two polymers show distinct grazing incidence X‐ray scattering spectra indicative of the presence of stacks with different orientation patterns in optimized thin‐film BHJ devices. Independent of the packing pattern the spectroscopic data also reveals the existence of polymer aggregates in the pristine polymer films as well as in both blends which trap excitons and hinder their dissociation.
Keywords:bulk‐heterojunction solar cells  charge carrier dynamics  polymer solar cells  structure–  property relationships  transient absorption spectroscopy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号