首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eleven mouse strains were inoculated in footpads with amastigotes of Leishmania tropica and observed for 12 weeks. Liver and spleen impression smears from infected mice were examined for the presence of intracellular parasites. Four strains (BALB/cJ, C57L/J, NZW/N, and P/J) failed to heal the subcutaneous lesion and showed evidence of systemic infection; the remaining seven strains (A/J, C3H/HeJ, C3H/HeN, C3HeB/FeJ, C57BL/6J, C57BL/10J, and C57BL/10ScN) were each resistant to infection and resolved their lesions by Week 10. Macrophages from the four susceptible strains could not be activated to kill L. tropica amastigotes by treatment with soluble lymphocyte products in vitro. In contrast, macrophages from all seven resistant strains responded to lymphokine treatment and eliminated 80-90% of intracellular parasites. These results suggest that in vitro macrophage microbicidal activities predict the course of systemic leishmanial disease.  相似文献   

2.
The immune mechanisms that underlie resistance and susceptibility to leishmaniasis are not completely understood for all species of Leishmania. It is becoming clear that the immune response, the parasite elimination by the host and, as a result, the outcome of the disease depend both on the host and on the species of the infecting Leishmania. Here, we analyzed the outcome of the infection of BALB/c mice with L. guyanensis in vivo and in vitro. We showed that BALB/c mice, which are a prototype of susceptible host for most species of Leishmania, dying from these infections, develop insignificant or no cutaneous lesions and eliminate the parasite when infected with promastigotes of L. guyanensis. In vitro, we found that thioglycollate-elicited BALB/c peritoneal macrophages, which are unable to eliminate L. amazonensis without previous activation with cytokines or lipopolysaccharide, can kill L. guyanensis amastigotes. This is the first report showing that infection of peritoneal macrophages with stationary phase promastigotes efficiently triggers innate microbicidal mechanisms that are effective in eliminating the amastigotes, without exogenous activation. We demonstrated that L. guyanensis amastigotes die inside the macrophages through an apoptotic process that is independent of nitric oxide and is mediated by reactive oxygen intermediates generated in the host cell during infection. This innate killing mechanism of macrophages may account for the resistance of BALB/c mice to infection by L. guyanensis.  相似文献   

3.
Neodiplostomum seoulense is highly pathogenic and lethal to experimental mice; most worms are expelled within 2 mo of acquisition. In this study, T-helper (Th) cell immune responses were studied in N. seoulense-infected BALB/c mice. Spleen and mesenteric lymph node (MLN) cells of infected mice proliferated in response to parasite antigens; CD4+ T cells proliferated more than CD8+ T cells. Antigen-induced interferon (IFN)-gamma (a Th1 cytokine) secretion began to increase at day 7 postinfection (PI) in spleen and MLN cells, and this was maintained at day 28 PI, whereas interleukin (IL)-4 (a Th2 cytokine) secretion was somewhat lower. Similar results were observed for mRNA signals of IFN-gamma and IL-4. Antigen-specific serum total immunoglobulin (Ig)G, IgG1, IgM, and IgA levels (Th2-induced) were elevated from days 7 to 14 to day 28 PI, and IgG2a (Th1-induced) was elevated at days 21 to 28 PI. Interestingly, the numbers of macrophages (Th1- or Th2-induced), which were found to kill N. seoulense worms in vitro, increased remarkably during days 14-28 PI in spleens and small intestines of infected mice. This study shows that mixed Th1 and Th2 responses occur during the course of N. seoulense infection in BALB/c mice. Heavy infiltrations of macrophages in the small intestine may participate in host damage and worm expulsion.  相似文献   

4.
C3H/HeN and C3H/HeJ mice were infected ip with viable BCG, a macrophage-activating agent, and their peritoneal exudate macrophages exposed to Leishmania tropica amastigotes. Macrophages from BCG-infected C3H/HeN mice had both leishmanicidal activities described for lymphokine activation of C3H/HeN macrophages in vitro: increased resistance to L. tropica infection, followed by intracellular killing of the parasite. Macrophages from BCG-infected C3H/HeN mice were also activated to kill tumor cells in vitro. In contrast, macrophages from BCG-treated C3H/HeJ mice were not resistant to L. tropica infection, did not kill intracellular amastigotes over 72 hr in culture, and were not cytotoxic to tumor cells.  相似文献   

5.
Leishmania donovani is an obligate intracellular parasite of mammalian macrophages. The immunosuppressant cyclosporin A (CsA), which inhibits the production of interleukin (IL)-1, IL-2, and interferon-gamma, increased infections 3-fold without affecting expression of the Lsh gene. The objective of this study was to determine how activation of macrophages by lymphokines affects the multiplication and propagation of the parasite within liver macrophages. Susceptible C57BL/6J and resistant C57L/J mice were treated with 200 mg/kg CsA and then infected intravenously with 10(7) amastigotes. Two weeks later macrophages were collected from the liver by perfusion, plated on coverslips, and incubated for 4, 24, and 48 hr. The percentage of infected macrophages and the number of amastigotes/100 cells were determined after staining the cells with Giemsa's stain. The number of infected macrophages and amastigotes per macrophage was significantly greater in animals of both strains that had been treated with CsA. This study demonstrated clearly that lymphokines or other soluble mediators produced by T cells act, in part, to control infection by L. donovani by minimizing both multiplication within macrophages and their dispersion.  相似文献   

6.
During the first 2 to 4 weeks of progressive visceral infection with the intracellular protozoan, Leishmania donovani, spleen cells from BALB/c mice failed in response to leishmanial antigen to produce either of the activating T cell-derived lymphokines, interleukin 2 (IL 2) or gamma-interferon (IFN-gamma). Four weeks after infection, however, antigen-induced IL 2 and IFN-gamma secretion emerged and coincided with the onset of control over parasite replication and the subsequent killing of greater than 80% of intrahepatic L. donovani. The development of this immunosecretory activity correlated with the hepatic tissue response at the site of parasitized Kupffer cells. This response progressed from Kupffer cell fusion (week 1) to fusion plus a mononuclear cell infiltrate (week 2) to well-organized granuloma formation (weeks 4 to 8). In contrast, T cell-deficient nude BALB/c mice exerted no control over L. donovani, their spleen cells failed to generate antigen-induced IFN-gamma, and at 4 weeks, their livers were devoid of any tissue reaction. Since spleen cells from 2-week infected normal mice did not produce antigen-stimulated IL 2 or IFN-gamma, these mice were treated with recombinant (r) lymphokines. Various protocols using both high and low dose human rIL 2 had no antileishmanial effect. Hepatic parasite replication was completely halted, however, by macrophage-activating doses of murine rIFN-gamma. These results reemphasize that an intact T cell-dependent response is required for successful defense against L. donovani, indicate that this immune response can be measured at both the cellular (secretory) and tissue levels, and confirm that IFN-gamma can exert an antileishmanial effect in vivo.  相似文献   

7.
Effector mechanisms of resistance exerted by T cells from BALB/c mice chronically infected with Trypanosoma cruzi, Tulahuén strain, were studied. Spleen cells from chronically infected mice (Chro-SC) prestimulated with heat-killed trypomastigotes (HKT) and/or IL-2 destroyed PHA-labeled p-815 mastocytoma cells, HKT-pulsed macrophages, and normal peritoneal macrophages. However, HKT-stimulated Chro-SC did not affect the infectivity of free bloodstream forms of the parasite. Upon HKT stimulation, Chro-SC or their culture supernatant activated peritoneal macrophages for the destruction of intracellular amastigotes. The effect was abolished after Thy 1.2+ cell depletion. The addition of Cyclosporin A (CyA), which blocks T-cell activation, during HKT-stimulation of Chro-SC, diminished their ability to activate the trypanocidal activity of macrophages. CyA also inhibited the production of both macrophage-activating factors and interferon-gamma by HKT-stimulated Chro-SC. CyA administration to recipients of nylon-wool nonadherent spleen cells from chronically infected mice inhibited their adoptively acquired resistance against T. cruzi, suggesting that the conferred resistance depended on the effect of specifically activated cells. When administered during the chronic stage of the infection, CyA abrogated the antigen-specific delayed type hypersensitivity response but increased the levels of anti-T. cruzi IgG antibodies. Neither parasitemia, tissular parasitism in myocardium or skeletal muscle, nor mortality were detected after CyA treatment, suggesting the presence of a CyA nonsensitive mechanism(s) in the control of T. cruzi during the chronic phase of the infection.  相似文献   

8.
SYNOPSIS Cyclophosphamide (Cy), 125 or 200 mg/kg body weight, injected intraperitoneally (i.p.) into BALB/c mice one day before infection with amastigotes of Leishmania donovani, by the 8th day postinfection caused a significant decrease in the mean numbers of parasites in spleens and livers when compared to mice injected with phosphate buffered saline (PBS). When 125 mg/kg was injected into chronically infected mice (on day 34 of infection), however, within 2 days (day 36) mean parasite levels in both the spleens and livers were statistically greater than in PBS-treated controls. Similarly, when a series of 6 Cy injections, 50 mg/kg each, was injected over a period of 8 days during the chronic stage of infection, the mean parasite levels in both spleens and livers were significantly increased over those of PBS-treated controls. Druing the chronic stage of infection, Cy injections suppressed the immunity to superinfection. Neither plasma nor parasitized peritoneal macrophages obtained from Cy-treated mice, when compared to PBS-treated mice, differed in their respective capacities to influence the growth of intracellular amastigote of L. donovani in vitro. Passive transfer of hyperimmune mouse serum could not reverse the immunosuppressive effects of Cy upon chronic leishmaniasis in the mouse. It is suggested that neither readily demonstrable anti-leishmanial humoral factors nor “immune” macrophages per se, plays a major role in acquired immunity to leishmaniasis in the mouse.  相似文献   

9.
Peritoneal cells from highly susceptible BALB/c mice were infected with Leishmania major and cultured for various times in vitro. The culture supernatants contained significant levels of IL-1 which were consistently higher than those in the cell cultures stimulated with an optimal concentration of LPS. This finding extends to a macrophage cell line, P388D1, and peritoneal exudate cells stimulated with starch in vivo. However, the level of IL-1 produced was significantly reduced when the cells were preincubated with a lymphokine preparation (supernatant of Con A-stimulated rat spleen cells). The level of IL-1 produced seems to be directly correlated with the degree of parasitization of the macrophages. A similar and dose-dependent reduction in IL-1 production by infected macrophages could also be obtained when the cells were preincubated with IFN-gamma. This finding is in direct contrast to that of visceral leishmaniasis in which peritoneal macrophages from BALB/c mice infected with Leishmania donovani not only fail to produce IL-1 but also lose the capacity to produce IL-1. This apparent discrepancy is discussed in terms of a possible difference in the induction of cell-mediated immunity between the two leishmanial diseases.  相似文献   

10.
To determine the role of IL-10 in cutaneous leishmaniasis, we examined lesion development following Leishmania major infection of genetically susceptible BALB/c mice lacking IL-10. Whereas normal BALB/c mice developed progressive nonhealing lesions with numerous parasites within them, IL-10(-/-) BALB/c mice controlled disease progression, and had relatively small lesions with 1000-fold fewer parasites within them by the fifth week of infection. We also examined a mechanism whereby Leishmania induced the production of IL-10 from macrophages. We show that surface IgG on Leishmania amastigotes allows them to ligate Fc gamma receptors on inflammatory macrophages to preferentially induce the production of high amounts of IL-10. The IL-10 produced by infected macrophages prevented macrophage activation and diminished their production of IL-12 and TNF-alpha. In vitro survival assays confirmed the importance of IL-10 in preventing parasite killing by activated macrophages. Pretreatment of monolayers with either rIL-10 or supernatants from amastigote-infected macrophages resulted in a dramatic enhancement in parasite intracellular survival. These studies indicate that amastigotes of Leishmania use an unusual and unexpected virulence factor, host IgG. This IgG allows amastigotes to exploit the antiinflammatory effects of Fc gamma R ligation to induce the production of IL-10, which renders macrophages refractory to the activating effects of IFN-gamma.  相似文献   

11.
The immunity of BALB.B mice to syngeneic Gross murine leukemia virus (MuLV)-induced B.GV cells was studied at various times after infection by Trypanosoma cruzi. BALB.B mice chronically infected by the parasite do not develop an effective immune response against B.GV tumor cells, and B.GV tumor growth in vivo is consequently facilitated. The tumor-specific cytolytic T lymphocyte (CTL) compartment in these mice was studied in vitro because CTL are known to participate actively in syngeneic tumor rejection. These analyses showed that: a) CTL differentiation is suppressed in mice with chronic T. cruzi infections; b) suppression is at the level of CTL precursor cell activation; c) suppression is not antigen-specific; and d) suppression is mediated by macrophages and Lyt-2+ T lymphocytes.  相似文献   

12.
Leishmania donovani is an obligate intracellular protozoan parasite of macrophages; liver macrophages are, however, the only population of cells which express the resistant Lsh gene phenotype when these cells are infected in vitro. It was of interest to study in vitro the action of Con A-stimulated spleen cell lymphokines (LK) to protect or to cure liver macrophages from infection by L. donovani. Liver and peritoneal macrophages (PEC) from resistant (C57L/J) and susceptible (C57BL/6J) mice were infected in vitro with promastigotes before or after LK treatment; the percentage of infected macrophages was determined 4, 24, 48 and 72 h post-infection. Both macrophage populations were protected or cured by treatment with lymphokines; the cells of the resistant strain were protected or cured more effectively than those of the susceptible strain. The capacity for cure or for protection following LK treatment of liver and PEC macrophages was similar within each strain. Supernatants from the IL-2-produced MLA-144 cell line had no effect to protect or cure macrophages. This study indicates that the response of macrophages to the action of LK is also important in determining the susceptibility of mice to L. donovani; this model in vitro provides a good approximation of the response of macrophages to therapy.  相似文献   

13.
The ability of BALB/c mice to resist reinfection with Leishmania donovani following chemotherapy was studied. BALB/c mice, infected with L. donovani, were treated on Days 7 and 8 postinfection with free, niosomal, or liposomal sodium stibogluconate. It was found that all three drug treatments caused a dramatic reduction in liver parasite burdens as measured on Days 6 and 29 post-treatment. On Day 6 postdrug treatment infection with L. donovani amastigotes, of mice from infected, drug-treated groups, along with age- and sex-matched uninfected controls, showed that at 23 days later, significantly fewer parasites were recovered from the livers of reinfected animals compared with controls given their first infection. Treatment of mice with sodium stibogluconate 6 days prior to a primary infection significantly reduced the number of parasites recovered 14 days later, especially using the carrier form of the drug. In vivo macrophage activity in the liver, as measured by the uptake of radiolabeled horseradish peroxidase immune complex, was significantly raised following stibogluconate treatment of infected but not uninfected mice. These results suggest that a state of resistance persists in the liver of infected mice following chemotherapy which may in part be due to local macrophage activation but also to an unsuspected persistance of the drug.  相似文献   

14.
C57BL/6 mice chronically infected with the protozoan parasite Leishmania donovani exhibit profoundly depressed splenic natural killer (NK) cell activity as measured by in vitro cytolysis of lymphoma target cells. Injection of infected mice with an interferon (IFN) inducer or in vitro treatment of infected splenocytes with IFN, a phorbol ester, or indomethacin failed to restore their NK activity to the degree shown by age-matched, uninfected mice. Fractionation of infected splenocytes by nylon wool, Sephadex G-10, or carbonyl iron and magnetism treatments was also unable to effect an increase in NK activity. Addition of infected splenocytes to uninfected ones in in vitro NK assays suppressed the NK activity of the latter, and the suppression could be partially or wholly abrogated by prior fractionation of infected splenocytes by the methods noted above. In vitro treatment of infected splenocytes with concanavalin A revealed the presence of NK activity in these cell populations. The results indicate that splenocytes in L. donovani-infected mice become insensitive to IFN stimulation; and the impairment of another, possibly IFN-independent pathway of NK-cell activation may also contribute to the observed L. donovani-induced depression in splenic NK activity in C57BL/6 mice.  相似文献   

15.
In this report, we describe an in vitro culture system for the generation and propagation of axenic amastigotes from the well characterised 1S-CL2D line of Leishmania donovani. Fine structure analyses of these in vitro-grown amastigotes demonstrated that they possessed morphological features characteristic of L. donovani tissue-derived amastigotes. Further, these axenic amastigotes (LdAxAm) were shown to synthesise and release a secretory acid phosphatase isoform similar to that produced by intracellular amastigotes. Such LdAxAm also expressed surface membrane 3'-nucleotidase enzyme activity similar to that of tissue-derived amastigotes. Moreover, LdAxAm, in contrast to promastigotes, expressed significant levels of the amastigote-specific A2 proteins. In addition, LdAxAm, derived from long term cultures of Ld 1S-CL2D promastigotes, had significant infectivity for both human macrophages in vitro and for hamsters in vivo. Thus, the in vitro culture system described herein provides a useful tool for the generation of large quantities of uniform populations of axenic amastigotes of the L. donovani 1S-CL2D line. The availability of such material should greatly facilitate studies concerning the cell and molecular biology of this parasite developmental stage.  相似文献   

16.
This study describes the first days of Taenia crassiceps infection in BALB/c substrains, BALB/cAnN and BALB/cJ, using two stocks of the same strains which were kept in different animal facilities, conventional and pathogen-free conditions, respectively. This study shows that parasite growth restriction shown by conventional BALB/cJ mice changed to parasite growth permissiveness when pathogen-free BALB/cJ mice were used. In addition, the higher number of macrophages, NK cells and intraperitoneal level of IFN-γ found in the conventional restrictive BALB/cJ substrain vanished when the permissiveness to the parasite growth increased. No differences were found in DNA sequences of parasites collected before and after the change in the permissiveness to parasite growth which favors the possibility that the observed modifications could be due to changes in the murine strains and/or their maintenance conditions.  相似文献   

17.
Recombinant murine IFN-gamma (rMu-IFN-gamma) was demonstrated to be a potent in vivo activator of mouse peritoneal macrophages to kill Trypanosoma cruzi in vitro and to be capable of conferring protection against death from acute T. cruzi infection. Following i.p. injections of rMu-IFN-gamma, resident peritoneal macrophages were cultured and infected with T. cruzi in vitro. Numbers of intracellular parasites were determined at different times thereafter. Ten or 100 micrograms (1 microgram = 6.5 X 10(5) U) of Mu-IFN-gamma, injected both 24 and 4 h before macrophage harvest, induced up to 99% inhibition of T. cruzi. One microgram of rMu-IFN-gamma was not effective under these conditions. In vitro inhibition of T. cruzi by peritoneal macrophages occurred by 24 h after infection and continued until at least 120 h after infection. There were no significant differences in initial parasite uptake by macrophages from IFN-gamma-treated or control mice, indicating that the rMu-IFN-gamma induced parasite killing. One i.p. dose of 10 micrograms was as effective as two doses if the single injection was given 24 h before macrophage harvest. In subsequent experiments, mice were given multiple injections of 10 micrograms rMu-IFN-gamma beginning 24 h before or 2 h after infection with virulent T. cruzi. Mice treated with rMu-IFN-gamma had significantly lower parasitemias and decreased morbidity compared with control mice. Proliferative responses to Con A and antibody responses to SRBC were not significantly lowered in IFN-gamma-treated mice, in contrast to untreated infected controls. All of the IFN-gamma-treated mice survived acute T. cruzi infection, whereas 100% of saline-treated infected mice died. It was demonstrated in this study that rMu-IFN-gamma activated mouse macrophages in vivo to kill T. cruzi and that rMu-IFN-gamma significantly reduced morbidity and immune suppression, and eliminated mortality resulting from acute infection with this parasite.  相似文献   

18.
Transformation of promastigotes of Leishmania donovani strain AG83 from amastigotes derived from an infected animal was studied in three media, Schneider's Drosophila medium (SDM), Medium 199 (M199), and biphasic M199 (B-M199) with 10% fetal bovine serum. The media, SDM and B-M199, both supported a more efficient transformation of promastigotes in comparison with M199. Infectivity studies in hamsters and BALB/c mice showed that promastigotes isolated in B-M199 were several folds more infective than those obtained from M199. Comparison of the infectivity and virulence of promastigotes of AG83, with a recent isolate of kala-azar, SL94, harvested under similar conditions, revealed greater infectivity of SL94 for both macrophages and animal models. The present study demonstrates that the medium used for the conversion of amastigotes to promastigotes plays a major role in determining the infectivity of the freshly transformed L. donovani promastigotes in hamsters and BALB/c mice. The source and the strain of the parasite also influence the outcome of L. donovani infection.  相似文献   

19.
Leishmania donovani causes human visceral leishmaniasis. The parasite infectious cycle comprises extracellular flagellated promastigotes that proliferate inside the insect vector, and intracellular nonmotile amastigotes that multiply within infected host cells. Using primary macrophages infected with virulent metacyclic promastigotes and high spatiotemporal resolution microscopy, we dissect the dynamics of the early infection process. We find that motile promastigotes enter macrophages in a polarized manner through their flagellar tip and are engulfed into host lysosomal compartments. Persistent intracellular flagellar activity leads to reorientation of the parasite flagellum toward the host cell periphery and results in oscillatory parasite movement. The latter is associated with local lysosomal exocytosis and host cell plasma membrane wounding. These findings implicate lysosome recruitment followed by lysosome exocytosis, consistent with parasite-driven host cell injury, as key cellular events in Leishmania host cell infection. This work highlights the role of promastigote polarity and motility during parasite entry.  相似文献   

20.
Factors obtained from phorbol myristate acetate (PMA)-stimulated EL-4 thymoma cells, a continuous T cell line, suppressed lymphokine-induced macrophage activation to kill intracellular Leishmania tropica amastigotes. Suppression of this macrophage effector activity was dependent upon concentration of EL-4 fluids admixed with lymphokines in infected macrophage cultures, and was not due to residual PMA or factors released from unstimulated EL-4 cells. Fluids from PMA-stimulated EL-4 cells did not affect the expression of microbicidal activity by macrophages activated in vivo as a consequence of infections with Mycobacterium bovis strain BCG, nor did they abrogate intracellular killing activities by C3H/HeJ macrophages primed by BCG infection and triggered by lymphokines in vitro. That the action of this EL-4 suppressor activity was at the priming stage of macrophage activation was confirmed by kinetic studies: EL-4 fluids added to lymphokine-treated cells in the first 4 hr of treatment completely suppressed intracellular killing of L. tropica; fluids added after 4 hr were not effective. The effects of these EL-4 factors appeared to be selective: of three effector activities of activated macrophages tested, induction of resistance to infection, tumor cytotoxicity, and intracellular destruction of L. tropica, only intracellular killing by lymphokine-treated macrophages was significantly suppressed. These T cell-derived soluble suppressor factor(s) may provide insight into mechanisms of immunosuppression during leishmanial disease and perhaps other intracellular parasitic infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号