首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lateral root development in cultured seedlings of Pisum sativum (cv. Alaska) was modified by the application of auxin transport inhibitors or antagonists. When applied either to replace the root tip or beneath the cotyledonary node, two auxin transport inhibitors, 2,3,5-triiodobenzoic acid (TIBA) and 3,3a-dihydro-2-(p-methoxyphenyl)-8H-pyrazolo[5,1-α]isoindol-8-one (DPX-1840), increased cell division activity opposite the protoxylem poles. This resulted in the formation of masses of cells, which we are calling root primordial masses (RPMs), 2 to 3 days after treatment. RPMs differed from lateral root primordia in that they lacked apical organization. Some roots however developed both RPMs and lateral roots indicating that both structures were similar in terms of the timing and location of cell division in the pericycle and endodermis leading to their initiation. Removal of the auxin transport inhibitors allowed many of the RPMs to organize later into lateral root primordia and to emerge in clusters. When the auxin, indoleacetic acid (IAA) was added to the growth medium along with DPX-1840, 3 ranks of RPMs now in the form of fasciated lateral roots emerged from the primary root. The auxin antagonist, p-chlorophenoxy-isobutyric acid (PCIB), also induced RPM formation. In contrast to DPX-1840 treatment, the addition of IAA during PCIB treatment caused normal lateral root development.  相似文献   

2.
R. D. MacLeod 《Planta》1966,71(3):257-267
Summary Roots of Vicia faba were treated with colchicine (0.025%), or IAA (4.7×10-6 M), or both, for 3 hours and fixed at various intervals over the following 11 days. The axis of spindle orientation and the distribution of mitotic figures, lateral root primordia and xylem vessel elements was examined in the apical 10 mm of median longitudinal sections of these roots.No effect of IAA was found on the orientation of the spindle. However, evidence was obtained indicating that the systems controlling the polarity of cell division and cell expansion differ in some way.The number of lateral root primordia formed was greater in roots treated with IAA or colchicine than in control roots. These primordia were always initiated adjacent to a xylem vessel. Thus, no primordium was closer to the apex than the most apical xylem vessel, suggesting that an endogenous factor involved in primordia initiation is transported in the xylem. The primordia which develop after colchicine treatment grow out as lateral roots; this is in contrast with those which form after IAA treatment and which do not undergo elongation. These results, which it must be emphasized apply only to the apical 1 cm of treated roots, indicate that lateral root primordia become sensitive to IAA at a certain stage in their development. Exogenous IAA acts as an inhibitor.The new meristem, which forms in the primary root apex after colchicine treatment, contains both diploid and polyploid cells, i.e. it was formed from cells that were unaffected and from cells that were affected by colchicine. Following colchicine treatment the size of the meristem shrinks and this can be prevented by treatment with IAA. This and other evidence presented here, suggests that IAA is a factor involved in the control of the size of the apical meristem in normal roots.  相似文献   

3.
Lateral root formation is profoundly affected by auxins. Here we present data which indicate that light influences the formation of indole-3-acetic acid (IAA) in germinating Arabidopsis seedlings. IAA transported from the developing leaves to the root system is detectable as a short-lived pulse in the roots and is required for the emergence of the lateral root primordia (LRP) during early seedling development. LRP emergence is inhibited by the removal of apical tissues prior to detection of the IAA pulse in the root, but this treatment has minimal effects on LRP initiation. Our results identify the first developing true leaves as the most likely source for the IAA required for the first emergence of the LRP, as removal of cotyledons has only a minor effect on LRP emergence in contrast to removal of the leaves. A basipetal IAA concentration gradient with high levels of IAA in the root tip appears to control LRP initiation, in contrast to their emergence. A significant increase in the ability of the root system to synthesize IAA is observed 10 days after germination, and this in turn is reflected in the reduced dependence of the lateral root emergence on aerial tissue-derived auxin at this stage. We propose a model for lateral root formation during early seedling development that can be divided into two phases: (i) an LRP initiation phase dependent on a root tip-localized IAA source, and (ii) an LRP emergence phase dependent on leaf-derived IAA up to 10 days after germination.  相似文献   

4.
We have studied the role of endogenous auxin on adventitious rooting in hypocotyls of derooted sunflower (Helianthus annuus L. var. Dahlgren 131) seedlings. Endogenous free and conjugated indole-3-acetic acid (IAA) were measured in three segments of hypocotyls of equal length (apical, middle, basal) by using gas chromatography-mass spectrometry with [13C6]-IAA as an internal standard. At the time original roots were excised (0 h), the free IAA level in the hypocotyls showed an acropetally decreasing gradient, but conjugated IAA level increased acropetally; i.e. free to total IAA ratio was highest in the basal portion of hypocotyls. The basal portion is the region where most of root primordia were found. Some primordia were seen in this region within 24 h after the roots were excised. The quantity of free IAA in the middle portion of the hypocotyl increased up to 15 h after excision and then decreased. In this middle region there were fewer root primordia, and they could not be seen until 72 h. In the apical portion the amount of free IAA steadily increased and no root primordia were seen by 72 h. Surgical removal of various parts of the hypocotyl tissues caused adventitious root formation in the hypocotyl regions where basipetally transported IAA could accumulate. Reduction in the basipetal flow of auxin by N-1-naphthylphthalamic acid and 2,3,5-tri-iodobenzoic acid resulted in fewer adventitious roots. The fewest root primordia were seen if the major sources of endogenous auxin were removed by decapitation of the cotyledons and apical bud. Exogenous auxins promoted rooting and were able to completely overcome the inhibitory effect of 2,3,5-tri-iodobenzoic acid. Exogenous auxins were only partially able to overcome the inhibitory effect of decapitation. We conclude that in sunflower hypocotyls endogenously produced auxin is necessary for adventitious root formation. The higher concentrations of auxin in the basal portion may be partially responsible for that portion of the hypocotyl producing the greatest number of primordia. In addition to auxins, other factors such as wound ethylene and lowered cytokinin levels caused by excision of the original root system cuttings must also be important.  相似文献   

5.
6.
芡个体发育早期的研究   总被引:8,自引:3,他引:5  
刘玫  王臣  刘鸣远 《植物研究》2001,21(1):97-99
本文研究了芡个体发育的早期, 即心形胚至种苗。心形胚至成熟胚表现为:苗端先发育, 根端弱育;胚芽叶节上的节生根原基先发育, 根端无明显分化。种子胚至种苗表现为:种子萌发时, 下胚轴末端产生多细胞分枝下胚轴毛;种苗形成中, 节生根先发育, 胚根后发育, 且长达1mm左右即停止生长。这些器官发育顺序上的特点在被子植物中是很特殊的, 应该是系统发生上的原始性状。下胚轴毛是水生或湿生被子植物比较普遍的性状, 是区分下胚轴与胚根的指示性状。  相似文献   

7.
Anatomical changes in the radicle and shoot meristems of embryos of germinating seeds of the obligate root parasites, Alectra vogelii and Striga gesnerioides were studied. When germination of seeds was stimulated by cowpea (Vigna unguiculata) root exudate, growth occurred mainly in the radicular pole of embryos and minimally in the plumular pole, resulting in seedlings with elongated radicles. Maximum radicle elongations of about 3 mm in A. vogelii and 2 mm in S. gesnerioides were recorded during a period of 8 and 11 days, respectively. Analysis of the radicular tip during the course of seed germination revealed that the activity of the meristematic tissue progressively decreased until it completely disappeared. When germinated seeds were cultured on nutrient agar media, the radicle meristem of A. vogelii continued to grow producing a normal root with a root cap. On the other hand, the radicles of cultured S. gesnerioides seeds elongated only slightly before meristematic activity ceased. During continued growth of seedlings of both species on agar media, lateral roots whose tips had typical angiosperm root topography, were initiated from the radicle.  相似文献   

8.
The initiation of lateral root primordia and their subsequentemergence as secondary roots have been examined in attachedand excised roots of Zea mays grown in the presence or absenceof indol-3-yl acetic acid (IAA). Exposure to IAA enhanced anlageinception in both batches of roots. In the attached roots, theIAA-induced stimulation of primordium initiation was followedby a similar increase in lateral emergence. IAA treatment, however,had no effect on the number of laterals produced, per centimetreof root, in the excised primaries. Thus, exposure to IAA didnot directly enhance lateral emergence in the attached rootsnor did it stimulate such emergence in the excised ones. Nocorrelation was found between proliferative activity in themeristem at the apex of the primary or the rate of root elongationon the one hand, and either the number of primordia initiated,or the number of laterals produced, per centimetre of primary,on the other. Zea mays, maize, root, primordium, lateral, indol-3-yl acetic acid, meristematic activity  相似文献   

9.
The removal of four of five roots of 7–8-day-old wheat plants resulted in the activation of lateral root growth and the initiation of lateral root primordia on the remained root as compared to the main root of intact plants. The extent of this growth response depended on placing cut surface above or beneath the surface of the nutrient solution. The measurement of the IAA and cytokinin contents showed accumulation of these hormones in the root of experimental plants as compared to the main root of intact plants. IAA accumulation was correlated with the number of lateral roots and their primordia. The analysis of hormonal balance and their transport from the shoot to the root permits discussing the involvement of these hormones and their interaction in the control of root growth at the stages of both primordium initiation and development and lateral root elongation.  相似文献   

10.
Synthetic aryl esters of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) greatly enhanced adventitious root primordium initiation in bean (Phaseolus vulgaris L. cv. Top Crop) and jack pine (Pinus banksiana Lamb.) cuttings, respectively. Bean cuttings produced 95 to 154% more macroscopically visible root primordia in 2 days when treated with phenyl indole-3-acetate (P-IAA), in comparison with an equal concentration of IAA. Substantial but lesser increases occurred when treatment was done with 3-hydroxyphenyl indole-3-acetate (3HP-IAA). On a molar basis, either P-IAA or 3HP-IAA were 10 or more times as efficient as IAA in inducing adventitious root primordium initiation in bean cuttings. Methyl indole-3-acetate was no more effective than IAA in these tests. Phenyl indole-3-butyrate (P-IBA) consistently enhanced the number of rooted jack pine seedling cuttings by 11 to 12% in comparison with a 27% higher concentration of IBA. The number of elongated roots (2 mm or more) after 5 days was 165 to 276% greater for P-IAA than for IAA-treated bean cuttings. Similar but lesser increases occurred as a result of 3HP-IAA treatment. P-IBA in comparison with IBA treatment did not influence either the number of roots or length of the longest root per rooted jack pine cutting. Enzymes in bean and jack pine cuttings hydrolyzed the aryl esters. However, check experiments showed that initial integrity of the esters was required for enhanced activity in inducing root primordium initiation. Treatment of bean cuttings with hydrolysates of P-IAA, or with IAA and phenol, alone or combined, did not influence root primordium initiation or development in a manner different from treatment with IAA alone.  相似文献   

11.
The first sign of adventitious root formation in the petiole of the primary leaves of Phaseolus vulgaris after treatment with IAA was the dedifferentiation of mature parenchyma cells next to strands of sieve elements and companion cells. Colchicine strongly inhibited this dedifferentiation. Treatment with colchicine 3 days after treatment with IAA, caused the groups of meristematic cells formed to grow by cell enlargement only. Groups of more than about 30 meristematic cells changed into recognizable root primordia during this growth. Groups with a smaller number of meristematic cells extended also in size but did not form a recognizable root primordium.  相似文献   

12.
The tips of the tap roots of Pinus pinea seedlings were dipped in zeatin or iso-pentenyladenine solutions. Immediately after cytokinin application to the root tip or after a 24 h lag phase, [2-14C]IAA was applied to the shoot apex. Treating with zeatin resulted in an increase in [2-14C]IAA transport from the shoot to the root. Iso-pentenyladenine also caused a slight increase in transport of radioactivity to the root but this was less pronounced compared to the results obtained with zeatin. With zeatin treatment increasing amounts of radioactivity accumulated in the lateral root emerging zone of the tap root (Section III). This was in sharp contrast to the treatment with iso-pentenyladenine where little radioactivity accumulated in this section of the root. Recovery of radioactivity 48 h after applying [2-14C]IAA showed that 33% of the recovered radioactivity co-chromatographed with authentic IAA. The implications of the effect of different cytokinins on the distribution of radioactivity along the tap root of Pinus pinea following [2-14C]IAA application to the shoot are discussed.Abbreviations Z zeatin - iP iso-pentenyladenine - TCL thin-layer chromatography  相似文献   

13.
Previously, we characterized 92 Arabidopsis genes (AtSFLs) similar to the S-locus F-box genes involved in S-RNase-based self-incompatibility and found that they likely play diverse roles in Arabidopsis. In this study, we investigated the role of one of these genes, CEGENDUO (CEG, AtSFL61), in the lateral root formation. A T-DNA insertion in CEG led to an increased lateral root production, which was complemented by transformation of the wild-type gene. Its downregulation by RNAi also produced more lateral roots in transformed Arabidopsis plants whereas its overexpression generated less lateral roots compared to wild-type, indicating that CEG acts as a negative regulator for the lateral root formation. It was found that CEG was expressed abundantly in vascular tissues of the primary root, but not in newly formed lateral root primordia and the root meristem, and induced by exogenous auxin NAA (α-naphthalene acetic acid). In addition, the ceg mutant was hyposensitive to NAA, IAA (indole-3-acetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid), as well as the auxin transport inhibitor TIBA (3,3,5-triiodobenzoic acid), showing that CEG is an auxin-inducible gene. Taken together, our results show that CEG is a novel F-box protein negatively regulating the auxin-mediated lateral root formation in Arabidopsis. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

14.
15.
The seedling development of an undescribed Malaccotristicha species was observed by using seedling culture and microtomy to infer the evolution of body plan with a focus on the root, which is a developmentally leading organ of most Podostemaceae. The young seedling has a small primary shoot apical meristem and a primary root apical meristem. The shoot meristem develops into a plumular ramulus, and the root meristem, into a cylindrical radicle with no root cap. The radicle transforms to a dorsiventral, flattened, capped primary root. An adventitious root develops endogenously on the lateral side of the hypocotyl and is similar to the primary root. This is a new pattern in Podostemaceae. Comparison of this and described patterns of Podostemaceae (and the sister-group Hypericaceae) suggests that the radicle was lost in the early evolution of Podostemaceae and instead adventitious roots replaced it as a leading organ.  相似文献   

16.
The hormone auxin is known to inhibit root elongation and to promote initiation of lateral roots. Here we report complex effects of auxin on lateral root initiation in roots showing reduced cell elongation after auxin treatment. In Arabidopsis thaliana, the promotion of lateral root initiation by indole-3-acetic acid (IAA) was reduced as the IAA concentration was increased in the nanomolar range, and IAA became inhibitory at 25 nM. Detection of this unexpected inhibitory effect required evaluation of root portions that had newly formed during treatment, separately from root portions that existed prior to treatment. Lateral root initiation was also reduced in the iaaM-OX Arabidopsis line, which has an endogenously increased IAA level. The ethylene signaling mutants ein2-5 and etr1-3, the auxin transport mutants aux1-7 and eir1/pin2, and the auxin perception/response mutant tir1-1 were resistant to the inhibitory effect of IAA on lateral root initiation, consistent with a requirement for intact ethylene signaling, auxin transport and auxin perception/response for this effect. The pericycle cell length was less dramatically reduced than cortical cell length, suggesting that a reduction in the pericycle cell number relative to the cortex could occur with the increase of the IAA level. Expression of the DR5:GUS auxin reporter was also less effectively induced, and the AXR3 auxin repressor protein was less effectively eliminated in such root portions, suggesting that decreased auxin responsiveness may accompany the inhibition. Our study highlights a connection between auxin-regulated inhibition of parent root elongation and a decrease in lateral root initiation. This may be required to regulate the spacing of lateral roots and optimize root architecture to environmental demands.  相似文献   

17.
Summary Part of the IAA-I- or IAA-2-14C applied at low concentrations to the apices of intact, light-grown dwarf pea seedling was transported unchanged to the root system The calculated velocity of transport in the stem was 11 mm per hour. In the root the label accumulated in the developing lateral root primordia.A large proportion of the applied IAA was converted by tissues of the apical bud, stem and root to indole-3-acetyl-aspartic acid (IAAsp). This compound was not transported. In addition evidence was obtained for the formation of IAA-protein complexes in the apex and roots, but not in the fully-expanded internodes.Large quantities of a decarboxylation product of IAA, tentatively indentified as indole-3-aldehyde (IAld), and several minor metabolites of IAA, were detected in extracts of the roots and first internodes, but not in the above-ground organs exposed to light. These compounds were readily transported through stem and root tissues. Together, the decarboxylation of IAA and the formation of IAAsp operated to maintain a relatively constant level of free IAA-14C in the root system.  相似文献   

18.
BACKGROUND AND AIMS: Development and architecture of plant roots are regulated by phytohormones. Cytokinin (CK), synthesized in the root cap, promotes cytokinesis, vascular cambium sensitivity, vascular differentiation and root apical dominance. Auxin (indole-3-acetic acid, IAA), produced in young shoot organs, promotes root development and induces vascular differentiation. Both IAA and CK regulate root gravitropism. The aims of this study were to analyse the hormonal mechanisms that induce the root's primary vascular system, explain how differentiating-protoxylem vessels promote lateral root initiation, propose the concept of CK-dependent root apical dominance, and visualize the CK and IAA regulation of root gravitropiosm. KEY ISSUES: The hormonal analysis and proposed mechanisms yield new insights and extend previous concepts: how the radial pattern of the root protoxylem vs. protophloem strands is induced by alternating polar streams of high IAA vs. low IAA concentrations, respectively; how differentiating-protoxylem vessel elements stimulate lateral root initiation by auxin-ethylene-auxin signalling; and how root apical dominance is regulated by the root-cap-synthesized CK, which gives priority to the primary root in competition with its own lateral roots. CONCLUSIONS: CK and IAA are key hormones that regulate root development, its vascular differentiation and root gravitropism; these two hormones, together with ethylene, regulate lateral root initiation.  相似文献   

19.
The proximal-distal distribution of the lateral roots of five species was studied. A detailed investigation was carried out on two of the five species, Ceratopteris thalictroides and Cucurbita maxima. A definite pattern of lateral root arrangement, with a degree of variability related to the number of protoxylem poles, was found in all of the species studied. In the fern Ceratopteris, lateral root initiation was found to be related to the segmentation of the apical cell, which in turn determines the distribution of the laterals. In this species the lateral roots occur in a predictable sequence and they are grouped in pairs. In the angiosperms studied, the pattern of lateral root distribution seemed to depend primarily upon a rather strict longitudinal relationship between the lateral root primordia formed opposite any one protoxylem pole. In Cucurbita maxima, 93.7 ± 5.02% of the lateral root primordia observed were in a specific sequence. The laterals of this species are also arranged in groups. In the other plants studied, Arachis hypogaea, Victoria trickeri, and Eichhornia crassipes, the laterals were not as regularly arranged, but nevertheless they were found to be arranged in groups along the main root axis and not randomly dispersed. Factors controlling the spacing of lateral root primordia include their relationship with the developing vascular system, a direct effect of the parent root apex, and an effect of older lateral root primordia in the same sector of the root.  相似文献   

20.
The potential of Plant Growth Promoting Rhizobacteria (PGPR) has been demonstrated in the case of plant inoculation with bacteria of the genus Azospirillum which improves yield. A. brasilense produces a wide variety of molecules, including the natural auxin indole-3-acetic acid (IAA), as well as other phytoregulators. However, several studies have suggested that auxin induces changes in plant development during their interaction with the bacteria. The effects of A. brasilense Sp245 on the development of Arabidopsis thaliana root were investigated to help explain the molecular basis of the interaction. The results obtained showed a decrease in primary root length from the first day and remained so throughout the exposure, accompanied by a stimulation of initiation and maturation of lateral root primordia and an increase of lateral roots. An enhanced auxin response was evident in the vascular tissue and lateral root meristems of inoculated plants. However, after five days of bacterization, the response disappeared in the primary root meristems. The role of polar auxin transport (PAT) in auxins relocation involved the PGP1, AXR4-1, and BEN2 proteins, which apparently mediated A. brasilense-induced root branching of Arabidopsis seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号