首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Changes in intracellular Ca2+ concentrations ([Ca2+]i) are an important signal for various physiological activities. The Na+/Ca2+ exchangers (NCX) at the plasma membrane transport Ca2+ into or out of the cell according to the electrochemical gradients of Na+ and Ca2+ to modulate [Ca2+]i homeostasis. Calmodulin (CaM) senses [Ca2+]i changes and relays Ca2+ signals by binding to target proteins such as channels and transporters. However, it is not clear how calmodulin modulates NCX activity. Using CaM as a bait, we pulled down the intracellular loops subcloned from the NCX1 splice variants NCX1.1 and NCX1.3. This interaction requires both Ca2+ and a putative CaM-binding segment (CaMS). To determine whether CaM modulates NCX activity, we co-expressed NCX1 splice variants with CaM or CaM1234 (a Ca2+-binding deficient mutant) in HEK293T cells and measured the increase in [Ca2+]i contributed by the influx of Ca2+ through NCX. Deleting the CaMS from NCX1.1 and NCX1.3 attenuated exchange activity and decreased membrane localization. Without the mutually exclusive exon, the exchange activity was decreased and could be partially rescued by CaM1234. Point-mutations at any of the 4 conserved a.a. residues in the CaMS had differential effects in NCX1.1 and NCX1.3. Mutating the first two conserved a.a. in NCX1.1 decreased exchange activity; mutating the 3rd or 4th conserved a.a. residues did not alter exchange activity, but CaM co-expression suppressed activity. Mutating the 2nd and 3rd conserved a.a. residues in NCX1.3 decreased exchange activity. Taken together, our results demonstrate that CaM senses changes in [Ca2+]i and binds to the cytoplasmic loop of NCX1 to regulate exchange activity.  相似文献   

2.
Ischemia/reperfusion (I/R) damage in the heart occurs mainly during the first minutes of reperfusion. Urocortin (Ucn) is a member of the corticotrophin-releasing factor that has been identified as a potent endogenous cardioprotector peptide when used in pre- and postconditioning protocols. However, the underlying mechanisms are not completely elucidated. Here, we focused on intracellular calcium ([Ca2+]i) handling by Ucn when applied in early reperfusion. We used Langendorff-perfused rat hearts to determine hemodynamic parameters, and confocal microscopy to study global [Ca2+]i transients evoked by electrical stimulation in isolated cardiomyocytes loaded with fluorescence Ca2+ dye fluo-3AM. We found that the acute application of Ucn at the onset of reperfusion, in isolated hearts submitted to ischemia, fully recovered the hearts contractility and relaxation. In isolated cardiac myocytes, following ischemia we observed that the diastolic [Ca2+]i was increased, the systolic [Ca2+]i transients amplitude were depressed and sarcoplasmic reticulum (SR) Ca2+ load was reduced. These effects were correlated to a decrease in the Na+/Ca2+ exchanger (NCX) activity. Importantly, Ucn applied at reperfusion produced a complete recovery in diastolic [Ca2+]i and global [Ca2+]i transient amplitude, which were due to NCX activity improvement. In conclusion, we demonstrated that [Ca2+]i handling play an essential role in postconditioning action of Ucn.  相似文献   

3.
Intracellular [Na+]i and [Ca2+]i imbalance significantly contribute to neuro-axonal dysfunctions and maladaptive myelin repair or remyelination failure in chronic inflammatory demyelinating diseases such as multiple sclerosis. Progress in recent years has led to significant advances in understanding how [Ca2+]i signaling network drive degeneration or remyelination of demyelinated axons.The Na+/Ca2+ exchangers (NCXs), a transmembrane protein family including three members encoded by ncx1, ncx2, and ncx3 genes, are emerging important regulators of [Na+]i and [Ca2+]i both in neurons and glial cells. Here we review recent advance highlighting the role of NCX exchangers in axons and myelin-forming cells, i.e. oligodendrocytes, which represent the major targets of the aberrant inflammatory attack in multiple sclerosis. The contribution of NCX subtypes to axonal pathology and myelin synthesis will be discussed. Although a definitive understanding of mechanisms regulating axonal pathology and remyelination failure in chronic demyelinating diseases is still lacking and requires further investigation, current knowledge suggest that NCX activity plays a crucial role in these processes. Defining the relative contributions of each NCX transporter in axon pathology and myelinating glia will constitute not only a major advance in understanding in detail the intricate mechanism of neurodegeneration and remyelination failure in demyelinating diseases but also will help to identify neuroprotective or remyelinating strategies targeting selective NCX exchangers as a means of treating MS.  相似文献   

4.
We previously demonstrated a transmural gradient in Na/K pump current (I P) and [Na+] i , with the highest maximum I P and lowest [Na+] i in epicardium. The present study examines the relationship between the transmural gradient in I P and Na/Ca exchange (NCX). Myocytes were isolated from canine left ventricle. Whole-cell patch clamp was used to measure current generated by NCX (I NCX) and inward background calcium current (I ibCa), defined as inward current through Ca2+ channels less outward current through Ca2+-ATPase. When resting myocytes from endocardium (Endo), midmyocardium (Mid) or epicardium (Epi) were studied in the same conditions, I NCX was the same and I ibCa was zero. Moreover, Western blots were consistent with NCX protein being uniform across the wall. However, the gradient in [Na+] i , with I ibCa = 0, should create a gradient in [Ca2+] i . To test this hypothesis, we measured resting [Ca2+] i using two methods, based on either transport or the Ca2+-sensitive dye Fura2. Both methods demonstrated a significant transmural gradient in resting [Ca2+] i , with Endo > Mid > Epi. This gradient was eliminated by exposing Epi to sufficient ouabain to partially inhibit Na/K pumps, thus increasing [Na+] i to values similar to those in Endo. These data support the existence of a transmural gradient for Ca2+ removal by NCX. This gradient is not due to differences in expression of NCX; rather, it is generated by a transmural gradient in [Na+] i , which is due to a transmural gradient in plasma membrane expression of the Na/K pump.  相似文献   

5.
Summary Discrepancies about the role of L-type voltage-gated calcium channels (VGCC) in acetylcholine (ACh)-induced [Ca2+]i oscillations in tracheal smooth muscle cells (TSMCs) have been seen in recent reports. We demonstrate here that ACh-induced [Ca2+]i oscillations in TMCS were reversibly inhibited by three VGCC blockers, nicardipine, nifedipine and verapamil. Prolonged (several minutes) application of VGCC blockers, led to tachyphylaxis; that is, [Ca2+]i oscillations resumed, but at a lower frequency. Brief (15–30 s) removal of VGCC blockers re-sensitized [Ca2+]i oscillations to inhibition by the agents. Calcium oscillations tolerant to VGCC blockers were abolished by KB-R7943, an inhibitor of the reverse mode of Na+/Ca2+ exchanger (NCX). KB-R7943 alone also abolished ACh-induced [Ca2+]i oscillations. Enhancement of the reverse mode of NCX via removing extracellular Na+ reversed inhibition of ACh-induced [Ca2+]i oscillations by VGCC blockers. Inhibition of non-selective cation channels using Gd3+ slightly reduced the frequency of ACh-induced [Ca2+]i oscillations, but did not prevent the occurrence of tachyphylaxis. Altogether, these results suggest that VGCC and the reverse mode of NCX are two primary Ca2+ entry pathways for maintaining ACh-induced [Ca2+]i oscillations in TSMCs. The two pathways complement each other, and may account for tachyphylaxis of ACh-induced [Ca2+]i oscillations to VGCC blockers.  相似文献   

6.
NGF induces neuronal differentiation by modulating [Ca2+]i. However, the role of the three isoforms of the main Ca2+-extruding system, the Na+/Ca2+ exchanger (NCX), in NGF-induced differentiation remains unexplored. We investigated whether NCX1, NCX2, and NCX3 isoforms could play a relevant role in neuronal differentiation through the modulation of [Ca2+]i and the Akt pathway. NGF caused progressive neurite elongation; a significant increase of the well known marker of growth cones, GAP-43; and an enhancement of endoplasmic reticulum (ER) Ca2+ content and of Akt phosphorylation through an early activation of ERK1/2. Interestingly, during NGF-induced differentiation, the NCX1 protein level increased, NCX3 decreased, and NCX2 remained unaffected. At the same time, NCX total activity increased. Moreover, NCX1 colocalized and coimmunoprecipitated with GAP-43, and NCX1 silencing prevented NGF-induced effects on GAP-43 expression, Akt phosphorylation, and neurite outgrowth. On the other hand, the overexpression of its neuronal splicing isoform, NCX1.4, even in the absence of NGF, induced an increase in Akt phosphorylation and GAP-43 protein expression. Interestingly, tetrodotoxin-sensitive Na+ currents and 1,3-benzenedicarboxylic acid, 4,4′-[1,4,10-trioxa-7,13-diazacyclopentadecane-7,13-diylbis(5-methoxy-6,12-benzofurandiyl)]bis-, tetrakis[(acetyloxy)methyl] ester-detected [Na+]i significantly increased in cells overexpressing NCX1.4 as well as ER Ca2+ content. This latter effect was prevented by tetrodotoxin. Furthermore, either the [Ca2+]i chelator(1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid) (BAPTA-AM) or the PI3K inhibitor LY 294002 prevented Akt phosphorylation and GAP-43 protein expression rise in NCX1.4 overexpressing cells. Moreover, in primary cortical neurons, NCX1 silencing prevented Akt phosphorylation, GAP-43 and MAP2 overexpression, and neurite elongation. Collectively, these data show that NCX1 participates in neuronal differentiation through the modulation of ER Ca2+ content and PI3K signaling.  相似文献   

7.
The dyadic organization of ventricular myocytes ensures synchronized activation of sarcoplasmic reticulum (SR) Ca2+ release during systole. However, it remains obscure how the dyadic organization affects SR Ca2+ handling during diastole. By measuring intraluminal SR Ca2+ ([Ca2+]SR) decline during rest in rabbit ventricular myocytes, we found that ∼76% of leaked SR Ca2+ is extruded from the cytosol and only ∼24% is pumped back into the SR. Thus, the majority of Ca2+ that leaks from the SR is removed from the cytosol before it can be sequestered back into the SR by the SR Ca2+-ATPase (SERCA). Detubulation decreased [Ca2+]SR decline during rest, thus making the leaked SR Ca2+ more accessible for SERCA. These results suggest that Ca2+ extrusion systems are localized in T-tubules. Inhibition of Na+-Ca2+ exchanger (NCX) slowed [Ca2+]SR decline during rest by threefold, however did not prevent it. Depolarization of mitochondrial membrane potential during NCX inhibition completely prevented the rest-dependent [Ca2+]SR decline. Despite a significant SR Ca2+ leak, Ca2+ sparks were very rare events in control conditions. NCX inhibition or detubulation increased Ca2+ spark activity independent of SR Ca2+ load. Overall, these results indicate that during rest NCX effectively competes with SERCA for cytosolic Ca2+ that leaks from the SR. This can be explained if the majority of SR Ca2+ leak occurs through ryanodine receptors in the junctional SR that are located closely to NCX in the dyadic cleft. Such control of the dyadic [Ca2+] by NCX play a critical role in suppressing Ca2+ sparks during rest.  相似文献   

8.
The dyadic organization of ventricular myocytes ensures synchronized activation of sarcoplasmic reticulum (SR) Ca2+ release during systole. However, it remains obscure how the dyadic organization affects SR Ca2+ handling during diastole. By measuring intraluminal SR Ca2+ ([Ca2+]SR) decline during rest in rabbit ventricular myocytes, we found that ∼76% of leaked SR Ca2+ is extruded from the cytosol and only ∼24% is pumped back into the SR. Thus, the majority of Ca2+ that leaks from the SR is removed from the cytosol before it can be sequestered back into the SR by the SR Ca2+-ATPase (SERCA). Detubulation decreased [Ca2+]SR decline during rest, thus making the leaked SR Ca2+ more accessible for SERCA. These results suggest that Ca2+ extrusion systems are localized in T-tubules. Inhibition of Na+-Ca2+ exchanger (NCX) slowed [Ca2+]SR decline during rest by threefold, however did not prevent it. Depolarization of mitochondrial membrane potential during NCX inhibition completely prevented the rest-dependent [Ca2+]SR decline. Despite a significant SR Ca2+ leak, Ca2+ sparks were very rare events in control conditions. NCX inhibition or detubulation increased Ca2+ spark activity independent of SR Ca2+ load. Overall, these results indicate that during rest NCX effectively competes with SERCA for cytosolic Ca2+ that leaks from the SR. This can be explained if the majority of SR Ca2+ leak occurs through ryanodine receptors in the junctional SR that are located closely to NCX in the dyadic cleft. Such control of the dyadic [Ca2+] by NCX play a critical role in suppressing Ca2+ sparks during rest.  相似文献   

9.
Isoform 3 of the Na+-Ca2+ exchanger (NCX3) participates in the Ca2+ fluxes across the plasma membrane. Among the NCX family, NCX3 carries out a peculiar role due to its specific functions in skeletal muscle and the immune system and to its neuroprotective effect under stress exposure. In this context, proper understanding of the regulation of NCX3 is primordial to consider its potential use as a drug target. In this study, we demonstrated the regulation of NCX3 by protein kinase A (PKA) and C (PKC). Disparity in regulation has been previously reported among the splice variants of NCX3 therefore the activity of Ca2+ uptake and extrusion of the two murine variants was measured using fura-2-based Ca2+ imaging and revealed that both variants are similarly regulated. PKC stimulation diminished the Ca2+ uptake performed by NCX3 in the reverse mode, triggered by a rise in [Ca2+]i or [Na+]i, whereas an opposite response was observed upon PKA stimulation, with a significant increase of the Ca2+ uptake after a rise in [Ca2+]i. The latter stimulation affected similarly the efflux capacity of NCX3 whereas Ca2+ extrusion capacity remained unaffected under activation of PKC. Next, using site-directed mutagenesis, the sensitivity of NCX3 to PKC was abolished by singly mutating its predicted phosphorylation sites T529 or S695. The sensitivity to PKC might be due to the influence of T529 phosphorylation on the Ca2+-binding domain 1. Additionally, we showed that stimulation of NCX3 by PKA occurred through residue S524. This effect may well participate in the fight-or-flight response in skeletal muscle and the long-term potentiation in hippocampus.  相似文献   

10.
Cardiac hypertrophy plays a major role in heart failure and is related to patient morbidity and mortality. Calcium overloading is a main risk for cardiac hypertrophy, and Na+/K+-ATPase (NKA) has been found that it could not only regulate intracellular Na+ levels but also control the intracellular Ca2+ ([Ca2+]i) level through Na+/Ca2+-exchanger (NCX). Recent studies have reported that klotho could affect [Ca2+]i level. In this study, we aimed at exploring the role of klotho in improving isoproterenol-induced hypertrophic response of H9C2 cells. The H9C2 cells were randomly divided into control and isoproterenol (ISO) (10 μM) groups. Klotho protein (10 μg/ml) or NKAα2 siRNA was used to determine the changes in isoproterenol-induced hypertrophic response. The alterations of [Ca2+]i level were measured by spectrofluorometry. Our results showed that H9C2 cells which were treated with isoproterenol presented a higher level of [Ca2+]i and hypertrophic gene expression at 24 and 48 h compared with the control group. Moreover, the expressions of NKAα1 and NKAα2 were both increased in control and ISO groups after treating with klotho protein; meanwhile, the NKA activity was increased and NCX activity was decreased after treatment. Consistently, the [Ca2+]i level and hypertrophic gene expression were decreased in ISO group after klotho protein treatment. However, these effects were both prevented by transfecting with NKAα2 siRNA. In conclusion, these findings demonstrated that klotho inhibits isoproterenol-induced hypertrophic response in H9C2 cells by activating NKA and inhibiting the reverse mode of NCX and this effect may be associated with the upregulation of NKAα2 expression.  相似文献   

11.
Isoform 3 of the Na+-Ca2+ exchanger (NCX3) is crucial for maintaining intracellular calcium ([Ca2+]i) homeostasis in excitable tissues. In this sense NCX3 plays a key role in neuronal excitotoxicity and Ca2+ extrusion during skeletal muscle relaxation. Alternative splicing generates two variants (NCX3-AC and NCX3-B). Here, we demonstrated that NCX3 variants display a tissue-specific distribution in mice, with NCX3-B as mostly expressed in brain and NCX-AC as predominant in skeletal muscle. Using Fura-2-based Ca2+ imaging, we measured the capacity and regulation of the two variants during Ca2+ extrusion and uptake in different conditions. Functional studies revealed that, although both variants are activated by intracellular sodium ([Na+]i), NCX3-AC has a higher [Na+]i sensitivity, as Ca2+ influx is observed in the presence of extracellular Na+. This effect could be partially mimicked for NCX3-B by mutating several glutamate residues in its cytoplasmic loop. In addition, NCX3-AC displayed a higher capacity of both Ca2+ extrusion and uptake compared with NCX3-B, together with an increased sensitivity to intracellular Ca2+. Strikingly, substitution of Glu580 in NCX3-B with its NCX3-AC equivalent Lys580 recapitulated the functional properties of NCX3-AC regarding Ca2+ sensitivity, Lys580 presumably acting through a structure stabilization of the Ca2+ binding site. The higher Ca2+ uptake capacity of NCX3-AC compared with NCX3-B is in line with the necessity to restore Ca2+ levels in the sarcoplasmic reticulum during prolonged exercise. The latter result, consistent with the high expression in the slow-twitch muscle, suggests that this variant may contribute to the Ca2+ handling beyond that of extruding Ca2+.  相似文献   

12.
Phosphatidylinositol biphosphate (PtdIns-4,5P2) plays a key role in the regulation of the mammalian heart Na+/Ca2+ exchanger (NCX1) by protecting the intracellular Ca2+ regulatory site against H+i and (H+i + Na+i) synergic inhibition. MgATP and MgATP-γ-S up-regulation of NCX1 takes place via the production of this phosphoinositide. In microsomes containing PtdIns-4,5P2 incubated in the absence of MgATP and at normal [Na+]i, alkalinization increases the affinity for Ca2+i to the values seen in the presence of the nucleotide at normal pH; under this condition, addition of MgATP does not increase the affinity for Ca2+i any further. On the other hand, prevention of Na+i inhibition by alkalinization in the absence of MgATP does not take place when the microsomes are depleted of PtdIns-4,5P2. Experiments on NCX1–PtdIns-4,5P2 cross-coimmunoprecipitation show that the relevant PtdIns-4,5P2 is not the overall membrane component but specifically that tightly attached to NCX1. Consequently, the highest affinity of the Ca2+i regulatory site is seen in the deprotonated and PtdIns-4,5P2-bound NCX1. Confirming these results, a PtdIns-5-kinase also cross-coimmunoprecipitates with NCX1 without losing its functional competence. These observations indicate, for the first time, the existence of a PtdIns-5-kinase in the NCX1 microdomain.  相似文献   

13.
Na+/Ca2+ exchange (NCX) is a major Ca2+ extrusion system in cardiac myocytes, but can also mediate Ca2+ influx and trigger sarcoplasmic reticulum Ca2+ release. Under conditions such as digitalis toxicity or ischemia/reperfusion, increased [Na+]i may lead to a rise in [Ca2+]i through NCX, causing Ca2+ overload and triggered arrhythmias. Here we used an agent which selectively blocks Ca2+ influx by NCX, KB-R7943 (KBR), and assessed twitch contractions and Ca2+ transients in rat and guinea pig ventricular myocytes loaded with indo-1. KBR (5 M) did not alter control steady-state twitch contractions or Ca2+ transients at 0.5 Hz in rat, but significantly decreased them in guinea pig myocytes. When cells were Na+-loaded by perfusion of strophanthidin (50 M), the addition of KBR reduced diastolic [Ca2+]i and abolished spontaneous Ca2+ oscillations. In guinea pig papillary muscles exposed to substrate-free hypoxic medium for 60 min, KBR (10 M applied 10 min before and during reoxygenation) reduced both the incidence and duration of reoxygenation-induced arrhythmias. KBR also enhanced the recovery of developed tension after reoxygenation. It is concluded that (1) the importance of Ca2+ influx via NCX for normal excitation-contraction coupling is species-dependent, and (2) Ca2+ influx via NCX may be critical in causing myocardial Ca2+ overload and triggered activities induced by cardiac glycoside or reoxygenation.  相似文献   

14.
We have developed a quantitative model for the creation of cytoplasmic Ca2+ gradients near the inner surface of the plasma membrane (PM). In particular we simulated the refilling of the sarcoplasmic reticulum (SR) via PM–SR junctions during asynchronous [Ca2+]i oscillations in smooth muscle cells of the rabbit inferior vena cava. We have combined confocal microscopy data on the [Ca2+]i oscillations, force transduction data from cell contraction studies and electron microscopic images to build a basis for computational simulations that model the transport of calcium ions from Na+/Ca2+ exchangers (NCX) on the PM to sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) pumps on the SR as a three-dimensional random walk through the PM–SR junctional cytoplasmic spaces. Electron microscopic ultrastructural images of the smooth muscle cells were elaborated with software algorithms to produce a very clear and dimensionally accurate picture of the PM–SR junctions. From this study, we conclude that it is plausible and possible for enough Ca2+ to pass through the PM–SR junctions to replete the SR during the regenerative Ca2+ release, which underlies agonist induced asynchronous Ca2+ oscillations in vascular smooth muscle.  相似文献   

15.
In the present investigation, intracellular sodium ([Na+]i) levels were determined in GH4C1 cells using the fluorescent probe SBFI. Fluorescence was determined by excitation at 340 nm and 385 nm, and emission was measured at 500 nm. Intracellular free sodium ([Na+]i) was determined by comparing the ratio 340/385 to a calibration curve. The ratio was linear between 10 and 60 mM Na+. Resting [Na+]i in GH4C1 cells was 26 ± 6.2 mM (mean ± SD). In cells incubated in Na+-buffer [Na+]i decreased to 3 ± 3.6 mM. If Na+/K+ ATPase was inhibited by incubating the cells with 1 mM ouabain, [Na+]i increased to 47 ± 12.8 mM in 15 min. Stimulating the cells with TRH, phorbol myristyl acetete, or thapsigargin had no effect on [Na+]i. Incubating the cells in Ca2+-buffer rapidly increased [Na+]i. The increase was not inhibited by tetrodotoxin. Addition of extracellular Ca2+, nimodipine, or Ni2+ to these cells immediately decreased [Na+]i, whereas Bay K 8644 enhanced the influx of Na+. In cells where [Na+]i was increased the TRH-induced increase in intracellular free calcium ([Ca2+]i) was decreased compared with control cells. Our results suggest that Na+ enters the cells via Ca2+ channels, and [Na+]i may attenuate TRH-induced changes in [Ca2+]i in GH4C1 cells. © 1993 Wiley-Liss, Inc.  相似文献   

16.
The prevalence of death from cardiovascular disease is significantly higher in elderly populations; the underlying factors that contribute to the age‐associated decline in cardiac performance are poorly understood. Herein, we identify the involvement of sodium/glucose co‐transporter gene (SGLT2) in disrupted cellular Ca2+‐homeostasis, and mitochondrial dysfunction in age‐associated cardiac dysfunction. In contrast to younger rats (6‐month of age), older rats (24‐month of age) exhibited severe cardiac ultrastructural defects, including deformed, fragmented mitochondria with high electron densities. Cardiomyocytes isolated from aged rats demonstrated increased reactive oxygen species (ROS), loss of mitochondrial membrane potential and altered mitochondrial dynamics, compared with younger controls. Moreover, mitochondrial defects were accompanied by mitochondrial and cytosolic Ca2+ ([Ca2+]i) overload, indicative of disrupted cellular Ca2+‐homeostasis. Interestingly, increased [Ca2+]i coincided with decreased phosphorylation of phospholamban (PLB) and contractility. Aged‐cardiomyocytes also displayed high Na+/Ca2+‐exchanger (NCX) activity and blood glucose levels compared with young‐controls. Interestingly, the protein level of SGLT2 was dramatically increased in the aged cardiomyocytes. Moreover, SGLT2 inhibition was sufficient to restore age‐associated defects in [Ca2+]i‐homeostasis, PLB phosphorylation, NCX activity and mitochondrial Ca2+‐loading. Hence, the present data suggest that deregulated SGLT2 during ageing disrupts mitochondrial function and cardiac contractility through a mechanism that impinges upon [Ca2+]i‐homeostasis. Our studies support the notion that interventions that modulate SGLT2‐activity can provide benefits in maintaining [Ca2+]i and cardiac function with advanced age.  相似文献   

17.
Numerous lines of evidence indicate that nuclear calcium concentration ([Ca2+]n) may be controlled independently from cytosolic events by a local machinery. In particular, the perinuclear space between the inner nuclear membrane (INM) and the outer nuclear membrane (ONM) of the nuclear envelope (NE) likely serves as an intracellular store for Ca2+ ions. Since ONM is contiguous with the endoplasmic reticulum (ER), the perinuclear space is adjacent to the lumen of ER thus allowing a direct exchange of ions and factors between the two organelles. Moreover, INM and ONM are fused at the nuclear pore complex (NPC), which provides the only direct passageway between the nucleoplasm and cytoplasm. However, due to the presence of ion channels, exchangers and transporters, it has been generally accepted that nuclear ion fluxes may occur across ONM and INM. Within the INM, the Na+/Ca2+ exchanger (NCX) isoform 1 seems to play an important role in handling Ca2+ through the different nuclear compartments. Particularly, nuclear NCX preferentially allows local Ca2+ flowing from nucleoplasm into NE lumen thanks to the Na+ gradient created by the juxtaposed Na+/K+-ATPase. Such transfer reduces abnormal elevation of [Ca2+]n within the nucleoplasm thus modulating specific transductional pathways and providing a protective mechanism against cell death. Despite very few studies on this issue, here we discuss those making major contribution to the field, also addressing the pathophysiological implication of nuclear NCX malfunction.  相似文献   

18.
Progesterone (P) has previously been shown to rapidly increase free intracellular calcium concentration ([Ca2−]i), and subsequently to initiate the acrosome reaction (AR) in capacitated human sperm. The present study used cytochemical analysis of the AR, and spectrofluorometric determination of sperm [Ca2−]i and intracellular pH (pHi) in Na+-containing and Na+-deficient bicarbonate/CO2-buffered media to investigate the role of Na+ in these P-initiated changes. We found that P failed to initiate the AR in Na+-deficient medium, and that the initial rise in [Ca2+]i following P (1 μg/ml) stimulation was similar for both media; however, the [Ca2+]i in the Na+-deficient medium regressed more rapidly and plateaued at a significantly lower [Ca2+]i. Moreover, the differences in plateau [Ca2+]i were directly related to the percentage of acrosome reactions, suggesting that the plateau phase is not due to [Ca2+]i, but rather to the release of intracellular fura-2 into the medium during the AR. These [Ca2+]i and AR results are in contrast to those reported previously by others for human sperm and suggest that a Na+-dependent mechanism is important in the P-initiated human sperm AR. Such a Na+ requirement may reflect the involvement of this ion in pHi regulation, as capacitated sperm that were incubated in a Na+-deficient medium for ≥ 30 min displayed a significantly lower pHi. © 1996 Wiley-Liss, Inc.  相似文献   

19.
We have previously demonstrated that intermittent high-altitude (IHA) hypoxia significantly attenuates ischemia-reperfusion (I/R) injury-induced excessive increase in resting intracellular Ca2+ concentrations ([Ca2+]i). Because the sarcoplasmic reticulum (SR) and Na+/Ca2+ exchanger (NCX) play crucial roles in regulating [Ca2+]i and both are dysfunctional during I/R, we tested the hypothesis that IHA hypoxia may prevent I/R-induced Ca2+ overload by maintaining Ca2+ homeostasis via SR and NCX mechanisms. We thus determined the dynamics of Ca2+ transients and cell shortening during preischemia and I/R injury in ventricular cardiomyocytes from normoxic and IHA hypoxic rats. IHA hypoxia did not affect the preischemic dynamics of Ca2+ transients and cell shortening, but it significantly suppressed the I/R-induced increase in resting [Ca2+]i levels and attenuated the depression of the Ca2+ transients and cell shortening during reperfusion. Moreover, IHA hypoxia significantly attenuated I/R-induced depression of the protein contents of SR Ca2+ release channels and/or ryanodine receptors (RyRs) and SR Ca2+ pump ATPase (SERCA2) and SR Ca2+ release and uptake. In addition, a delayed decay rate time constant of Ca2+ transients and cell shortening of Ca2+ transients observed during ischemia was accompanied by markedly inhibited NCX currents, which were prevented by IHA hypoxia. These findings indicate that IHA hypoxia may preserve Ca2+ homeostasis and contraction by preserving RyRs and SERCA2 proteins as well as NCX activity during I/R. intracellular Ca2+ concentration; Ca2+ transients; Ca2+ transporters; myofilament Ca2+ sensitivity  相似文献   

20.
Cardiac cellular calcium (Ca2+) handling is the well-investigated mediator of excitation–contraction coupling, the process that translates cardiac electrical activation into mechanical events. The reverse—effects of mechanical stimulation on cardiomyocyte Ca2+ handling—are much less well understood, in particular during the inter-beat period, called ‘diastole’. We have investigated the effects of diastolic length changes, applied axially using a pair of carbon fibres attached to opposite ends of Guinea pig isolated ventricular myocytes, on the availability of Ca2+ in the main cellular stores (the sarcoplasmic reticulum; SR), by studying the rest-decay of SR Ca2+ content [Ca2+]SR, and the reloading of the SR after prior depletion of Ca2+ from the cell.Cells were loaded with Fura-2 AM (an indicator of the cytosolic ‘free’ Ca2+ concentration, [Ca2+]i), and pre-conditioned by field-stimulation (2 Hz) at 37 °C, while [Ca2+]i transients and sarcomere length (SL) were recorded simultaneously. After reaching a steady state in the behaviour of observed parameters, stimulation was interrupted for between 5 and 60 s, while cells were either held at resting length, or stretched (controlled to cause a 10% increase in SL, to aid inter-individual comparison). Thereafter, each cell was returned to its original resting length, followed by swift administration of 10 mM of caffeine (in Na+/Ca2+-free solution), which causes the release of Ca2+ from the SR (caffeine), but largely prevents extrusion of Ca2+ from the cytosol to the cell exterior (Na+/Ca2+-free solution). By comparing the [Ca2+]i in cells exposed/not exposed to diastolic stretch of different duration, we assessed the rest-decay dynamics of [Ca2+]SR. To assess SR reloading after initial Ca2+ depletion, the same stretch protocol was implemented after prior emptying of the cell by application of 10 mM of caffeine in normal Tyrode solution (which causes Ca2+ to be released from the SR and extruded from the cell via the Na+/Ca2+ exchanger; NCX).Axial stretch enhanced the rate of both rest-decay and reloading of [Ca2+]SR. Application of 40 μM streptomycin, a blocker of stretch-activated ion channels, did not affect the stretch-induced increase in SR reloading. This behaviour was reproduced in a computer simulation study, using a modified version of the 2006 Iribe–Kohl–Noble model of single cardiac myocyte Ca2+ handling, suggesting that stretch increases both Ca2+ leak from the SR and Ca2+ influx via the sarcolemma. This may have important implications for the mobilisation of Ca2+ in stretched cells, and could contribute to the regional ‘matching’ of individual cardiomyocyte contractility to dynamic, and regionally varying, changes in mechanical loads, such as diastolic pre-load, of cardiac tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号