首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 900 毫秒
1.
The purpose of the present investigation was to determine the nature of the functional interaction of muscarinic agonists with cAMP-generating and cAMP-independent agonists in left atria. Negative inotropic responses of rabbit isolated left atrial strips to the muscarinic agonist carbachol were measured in the absence and presence of equi-active inotropic doses of the beta-adrenoceptor stimulant isoproterenol (Iso), the mixed alpha- and beta-adrenoceptor stimulant phenylephrine (PE) plus 1 microM timolol to block the beta-receptor mediated component of its response, and elevated extracellular Ca2+. Carbachol produced dose-dependent negative inotropic responses in left atrial strips, which were much greater than control in the presence of either Iso, or PE plus timolol. However, carbachol responses were of a similar magnitude to the control in the presence of elevated extracellular Ca2+. In the presence of timolol, PE had no significant effect on cAMP levels in left atrial strips, and inotropic responses to carbachol alone and in combination with PE plus timolol were accompanied by significant increases in cGMP levels but no change in cAMP levels. Carbachol attenuated Iso-induced increases in cAMP levels, but decreases in left atrial tension were proportionally greater than the decreases in cAMP levels produced by carbachol in the presence of Iso. These results suggest that the antiadrenergic effects of muscarinic receptor stimulation may occur by a different mechanism in left atria than has been previously reported in ventricular muscle. While the nature of this mechanism is unknown, it may involve antagonism by muscarinic agents of both alpha- and beta-adrenoceptor mediated increases in Ca2+ influx.  相似文献   

2.
The possible mechanisms of the indirect negative inotropic responses to the P1-receptor agonist, L-phenylisopropyladenosine (L-PIA) were evaluated in electrically paced (2 Hz, 5 ms pulse width, voltage 50% above threshold) left atria and papillary muscles of guinea pigs. The responses were compared in naive tissues (direct effects) or after prestimulation with submaximal concentrations of either cAMP-dependent positive inotropes (isoprenaline or forskolin) or the cAMP-independent inotrope Bay K 8644. Cumulative concentration-response curves were obtained in naive or prestimulated preparations for L-PIA or the potassium channel activator, cromakalim, for comparison. L-PIA and cromakalim exerted negative inotropy in naive atrial tissues, whereas only cromakalim was active in naive papillary muscles. In atria prestimulated with isoprenaline (31 nM) or forskolin (1.4 microM), the negative inotropy of L-PIA was enhanced compared with naive tissues. In contrast, prestimulation with Bay K 8644 (1 microM) exerted a significant functional antagonism of the response to L-PIA. In the case of cromakalim, prestimulation with isoprenaline exerted a functional antagonistic effect. In papillary muscles, an indirect negative inotropic effect of L-PIA was only seen in tissues prestimulated with the cAMP-dependent inotropes isoprenaline (31 nM) or forskolin (2.4 microM), and not in naive tissues or those prestimulated by Bay K 8644 (333 nM). As with atria, prestimulation with isoprenaline exerted a functional antagonistic effect on the response to cromakalim. These results suggest that the P1-receptor agonist, L-PIA, exerts its indirect negative inotropic effects in left atria by two mechanisms.2+ with cAMP-dependent positive inotropes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
1. Ouabain-sensitive 86Rb+ uptake by tissue preparations has been used as an estimate of Na+ pump activity. This uptake, however, may be a measure of the Na+ influx rate, rather than capacity of the Na+ pump, since intracellular Na+ concentration is a determinant of the active Na+/Rb+ exchange reaction under certain conditions. This aspect was examined by studying the effect of altered Na+ influx rate on ouabain-sensitive 86Rb+ uptake in atrial preparations of guinea pig hearts. 2. Electrical stimulation markedly enhanced ouabain-sensitive 86Rb+ uptake without affecting nonspecific, ouabain-insensitive uptake. Paired-pulse stimulation studies indicate that the stimulation-induced enhancement of 86Rb+ uptake is due to membrane depolarizations, and hence related to the rate of Na+ influx. 3. Alterations in the extracellular Ca2+ concentration failed to affect the 86Rb+ uptake indicating that the force of contraction does not influence 86Rb+ uptake. 4. Reduced Na+ influx by low extracellular Na+ concentration decreased 86Rb+ uptake, and an increased Na+ influx by a Na+-specific ionophore, monensin, enhanced 86Rb+ uptake in quiescent atria. 5. Grayanotoxins, agents that increase transmembrane Na+ influx, and high concentrations of monensin appear to have inhibitory effects on ouabain-sensitive 86Rb+ uptake in electrically stimulated and in quiescent atria. 6. Electrical stimulation or monensin enhanced ouabain binding to (Na+ + K+)-ATPase and also increased the potency of ouabain to inhibit 86Rb+ uptake indicating that the intracellular Na+ available to the Na+ pump is increased under these conditions. 7. The ouabain-sensitive 86Rb+ uptake in electrically stimulated atria was less sensitive to alterations in the extracellular Na+ concentration, temperature and monensin than that in quiescent atria. 8. These results indicate that the rate of Na+ influx is the primary determinant of ouabain-sensitive 86Rb+ uptake in isolated atria. Electrical stimulation most effectively increases the Na+ available to the Na+ pump system. The ouabain-sensitive 86Rb+ uptake by atrial preparations under electrical stimulation at a relatively high frequency seems to represent the maximal capacity of the Na+ pump in this tissue.  相似文献   

4.
Beta-phenylethylamine (PEA) induced an increase in cytosolic free calcium ion concentration ([Ca2+]c) in Saccharomyces cerevisiae cells monitored with transgenic aequorin, a Ca2+-dependent photoprotein. The PEA-induced [Ca2+]c increase was dependent on the concentrations of PEA applied, and the Ca2+ mostly originated from an extracellular source. Preceding the Ca2+ influx, H2O2 was generated in the cells by the addition of PEA. Externally added H2O2 also induced a [Ca2+]c increase. These results suggest that PEA induces the [Ca2+]c increase via H2O2 generation. The PEA-induced [Ca2+]c increase occurred in the mid1 mutant with a slightly smaller peak than in the wild-type strain, indicating that Mid1, a stretch-activated nonselective cation channel, may not be mainly involved in the PEA-induced Ca2+ influx. When PEA was applied, the MATa mid1 mutant was rescued from alpha-factor-induced death in a Ca2+-limited medium, suggesting that the PEA-induced [Ca2+]c increase can reinforce calcium signaling in the mating pheromone response pathway.  相似文献   

5.
The muscarinic agonist carbachol has previously been shown to reverse positive inotropic responses of rabbit left atrial strips to equiactive doses of the beta-adrenoceptor agonist isoproterenol and to the alpha-adrenoceptor agonist phenylephrine. Responses to phenylephrine were measured in the presence of the beta-blocker timolol. However, carbachol was not able to reverse the increase in tension produced by elevating the extracellular Ca2+ concentration. To gain more information about the nature of the functional interaction of carbachol with alpha- and beta-receptor stimulants in left atria, the interaction of carbachol with these agonists, as well as with elevated Ca2+ and the Ca2+ activator compound BAY K 8644, was compared with that of the Ca2+ antagonists D-600 and nifedipine. The results demonstrate that the Ca2+ antagonists exhibit a selectivity similar to that of carbachol, in that responses to both isoproterenol and phenylephrine plus timolol were blocked by low concentrations of D-600 and nifedipine, which had no effect on positive inotropic responses to elevated Ca2+. Higher concentrations of these antagonists shifted the Ca2+ dose-response curve to the right. In addition, although phenylephrine and BAY K 8644 increased tension to a similar extent, responses to phenylephrine were more sensitive than responses to BAY K 8644 to inhibition by both carbachol and D-600. These similarities between the effects of low concentrations of D-600 and nifedipine and those of carbachol are consistent with the hypothesis that carbachol antagonizes responses to alpha- and beta-receptor stimulation in left atria primarily by blocking increases in Ca2+ influx produced by these agonists.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The present study investigated whether genistein, a broad-spectrum tyrosine kinase inhibitor, could increase the myofilament Ca(2+) sensitivity and partially reverse postischemic depressed myocardial function. Left ventricular papillary muscles were isolated from adult Wistar rats and loaded with the Ca2+ indicator, aequorin. The use of fluorocarbon immersion with hypoxia simulated a model of ischemia. Myofilament responsiveness to Ca2+ was evaluated from force-[Ca2+]i relationship recorded during tetani in papillary muscles. Protein levels of troponin I (TnI) were measured in postischemic papillary muscles with the Western blot technique. Isometric contraction was depressed during the period of ischemia and remained low after 60 min of reoxygenation without a corresponding significant change of peak [Ca2+]i in the control group (n = 7). In contrast, the depression of isometric contraction was ameliorated during ischemia in muscle preparations in the presence of genistein (2 micro M; n = 8), and postischemic depressed myocardial contractility partially recovered after a 60-min reperfusion. The myofilament Ca2+ responsiveness was significantly increased in papillary muscles in the presence of genistein. Protein levels of TnI were reduced in postischemic papillary muscles, whereas genistein partially restored decreased protein levels of TnI. Our results reveal that genistein produces an effective attenuation of postischemic depressed myocardial function and improves myofibrillar Ca2+ responsiveness in rat myocardium.  相似文献   

7.
Palytoxin (PTX; 10(-14)-10(-6) M) caused a dose-dependent increase in the release of [3H]acetylcholine ([3H]ACh), cytosolic free Ca2+ concentration ([Ca2+]i), and uptake of 22Na+ and decrease in membrane potential in rat cerebrocortical synaptosomes. The dose-response curves for the PTX-induced increases in [3H]ACh release and in [Ca2+]i were depressed by removing extracellular Ca2+ or by decreasing extracellular Na+ concentrations. The release of [3H]ACh induced by concentrations of PTX less than 10(-10) M was more dependent on the simultaneous presence of both Ca2+ and Na+ than the release induced by higher concentrations of PTX. The PTX-induced increase both in [3H]ACh release and in [Ca2+]i was almost completely abolished by the combination of Ca2+ deprivation and Na+ concentration reduction. All responses to PTX were highly resistant to 10(-6) M tetrodotoxin. These results suggest that low concentrations of PTX cause depolarization as a result of an increase in Na+ permeability through tetrodotoxin-insensitive channels. This, in turn, increases Ca2+ influx and leads to an increase in the release of ACh. It appears that at high concentrations PTX increases the release of [3H]ACh by directly increasing the influx of Ca2+ into synaptosomes and by releasing Ca2+ from intracellular storage sites via an Na(+)-Ca2+ exchange mechanism.  相似文献   

8.
A number of investigations in humans and animals suggest that there may be intrinsic sex-associated differences in cardiac function. Using left atrial preparations from male and female rat hearts, we examined differences in myocardial function and response to adrenergic agonists. Contractile parameters were measured in isolated atria by conventional isometric methods in the absence or presence of isoproterenol or phenylephrine. Responsiveness to Ca2+ was measured in detergent-skinned atrial fibers and actomyosin ATPase activity was measured in isolated myofibrils. Tetanic contractions were generated by treating the atrium with ryanodine followed by high frequency stimulation. Developed force was greater and maximal rates of contraction and relaxation were more rapid in the female atrium. The relationship between Ca2+ concentration and force in both intact atria and detergent-skinned atrial fibers in females fell to the left of that for males. At low Ca2+ concentrations, skinned fibers from female atria generated more force and myofibrils from female atria had higher myosin ATPase activity than males. Tetanic contraction in the presence of high extracellular Ca2+ was greater in female atria. Male atrium had larger inotropic responses to isoproterenol and to phenylephrine, but drug-elicited cAMP and inositol phosphate production did not differ between sexes. The results demonstrate sex-related differences in atrial function that can be partially explained by greater myofibrillar Ca2+-sensitivity in females. A potential contribution of sarcolemmal Ca2+ influx is suggested by greater tetanic contraction in ryanodine-treated female atrium. The larger response of males to adrenergic stimulation does not appear to be explained by higher production of relevant second messengers. Future studies will investigate the role of sex hormones in these sexually dimorphic responses and may indicate a need for gender-specific therapeutic interventions for myocardial dysfunction.  相似文献   

9.
Post-quiescent potentiation (PQP), an enhanced contraction following a long pause that occurs as a result of increased Ca2+ release from intracellular stores, and post-stimulation potentiation (PSP), an enhanced contraction following a rapid series of contractions that is believed to be related to increased Ca2+ influx, were measured in streptozotocin-treated Wistar, spontaneously hypertensive (SHR), and Wistar-Kyoto (WKY) diabetic heart tissues. Decreased PQP values were found in Wistar and SHR diabetic papillary muscles (PM) in comparison with the same strain controls, which suggests a diminished degree of releasable Ca2+ from sarcoplasmic reticulum (SR) in these tissues. Decreased PSP was found in SHR diabetic PM, which may be related primarily to a depressed sarcolemmal (SL) Na(+)-Ca2+ exchange in this tissue. PSP was not decreased in diabetic Wistar or WKY cardiac preparations, indicating that Ca2+ entry via channels must be involved in the PSP mechanism. Ryanodine depressed PQP in Wistar and SHR PM, and SHR left atria in both control and diabetic tissues. It abolished PQP and SHR diabetic tissues but had no effect on WKY control and diabetic tissues. The data suggest that the ryanodine effect differs in the various strains of rat. These differences may be due to differences in the SR sensitivity to ryanodine among the strains. Diabetic SR with impaired Ca2+ uptake may contribute to these phenomena. Ryanodine depressed PSP of Wistar and SHR diabetic PM but had no effects on tissues from controls. The influence of ryanodine on diabetic SL Na(+)-Ca2+ exchange requires further investigation.  相似文献   

10.
In rabbit papillary muscles, the pronounced inotropic effect of amrinone (0.4-0.8 mg/mL) observed at low stimulation frequencies (0.1-0.5 Hz) diminished as the frequency was increased to 1.0-2.0 Hz. Reversal of the negative inotropic effect of halothane (1%) by amrinone (0.8 mg/mL) was similarly dependent on stimulation frequency. The contractile response to paired-pulse stimulation in the presence of amrinone (0.8 mg/mL) was summation rather than postextrasystolic potentiation. Amrinone (0.8 mg/mL) was not effective in reversing the negative inotropic effect of halothane (1%) on potentiated state contraction generated by paired-pulse stimulation. These results suggest that amrinone increases the influx of extracellular Ca2+ across the sarcolemma but not the availability of cellular Ca2+ which accumulates, most likely in sarcoplasmic reticulum, under the condition of potentiation.  相似文献   

11.
The aim of the study was to find out whether low phospholamban level in atria as compared with ventricles is associated with differences in sarcoplasmic reticular Ca2+-uptake and contractile performance. Relationship between phospholamban and -adrenergic stimulation in rat left atria and papillary muscles were examined by means of contractile measurements, sarcoplasmic reticular oxalate-supported Ca2+-uptake, and Western blotting of phosphorylated phospholamban. Phosphoprotein determination after -adrenergic stimulation demonstrated that the levels of Ser16 and Thr17 phosphorylated phospholamban in atria remained at about one-third of that in ventricles. However, comparison of sarcoplasmic reticular Ca2+-uptake in control and isoproterenol perfused preparations demonstrated that the effect of -adrenergic stimulation on sarcoplasmic reticular Ca2+-uptake was stronger in atrial preparations. Moreover, atria responded to isoproterenol with much larger increases in developed tension, contractility and relaxation rates than papillary muscles. Thus, despite lower level of phospholamban, the -adrenergic activation of sarcoplasmic reticular Ca2+-uptake and contractile indices are higher in atria.  相似文献   

12.
The mechanisms by which the chemotactic peptide formyl-methyl-leucyl-phenyl-alanine stimulates Ca2+ influx across the plasma membrane were investigated in the human promyelocytic cell line HL-60, induced to differentiate with dimethyl sulfoxide. Ca2+ influx was determined: (a) from the initial rate of Mn2+ influx, apparent from the quenching of intracellular quin2 or fura-2 fluorescence; (b) from the rate of the elevation of cytosolic free calcium, [Ca2+]i, upon readdition of Ca2+ to cells previously stimulated in the absence of extracellular Ca2+. [3H]Inositol tris-, tetrakis-, and pentakisphosphates were analyzed by a high performance liquid chromatography procedure which was optimized for the separation of inositol tetrakisphosphates, yielding three predominant isomers: inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), inositol 1,4,5,6-tetrakisphosphate, and inositol 1,3,4, 6-tetrakisphosphate. Both the kinetics and agonist dose dependence of Ca2+ influx stimulation correlated closely with the corresponding receptor-mediated variations of [Ca2+]i either in the presence or in the absence of extracellular Ca2+. Of the different inositol phosphates determined in parallel and under the same conditions, accumulation of [3H]Ins(1,3,4,5)P4 correlated best with Ca2+ influx both temporally and in its dose dependence in the presence or in the absence of extracellular Ca2+; inositol 1,3,4-trisphosphate was also correlated but to a lesser extent. Attenuations of [Ca2+]i elevations by decreasing extracellular Ca2+ or by increasing the cytosolic Ca2+ buffering capacity with quin2 led to parallel inhibition of Ca2+ influx and Ins(1,3,4,5)P4 production. In conclusion: 1) activation of Ca2+ influx by formyl-methionyl-leucyl-phenylalanine depends on the elevation of [Ca2+]i, the latter being initiated by Ca2+ mobilization from intracellular stores; 2) Ins(1,3, 4,5)P4 is a strong candidate for maintaining receptor-mediated activation of Ca2+ influx in differentiated HL-60 cells.  相似文献   

13.
The effects of stimulation frequency (0.2-1.5 Hz) and extracellular calcium concentration ([Ca2+]o) (0.6-15.0 mM) on the contractile function of thin papillary muscles of euthyroid and hyperthyroid rats were studied. Hyperthyroidism led to a decrease in developed tension (DT) and time to peak tension (TPT), but it exhibited no influence on the maximal rates of contraction (+dT/dt) and relaxation (-dT/dt). Also, the mean rates of contraction were similar in euthyroid and hyperthyroid muscle groups. The increase in stimulation frequency brought about a marked decrease in DT, +dT/dt, and -dT/dt of euthyroid papillary muscles at lower frequencies in comparison to papillary muscles in the hyperthyroid group. At stimulation frequencies above 1.0 Hz, the absolute and relative levels of DT and -dT/dt of hyperthyroid myocardium were elevated over euthyroid preparations. At the same time, TPT was unchanged in any of the muscle groups. Hyperthyroidism modulated the relationships between contractile parameters and [Ca2+]o. At a [Ca2+]o of 1.0-4.0 mM, the DT of hyperthyroid papillary muscles was lower than in euthyroid muscle. At 4.0 and 8.0 mM of [Ca2+]o, the equal values of maximal DT were registered for euthyroid and hyperthyroid papillary muscles, respectively. An increase in the [Ca2+]o in the range of 1.0-15.0 mM was accompanied by an increase in TPT of both muscle groups, but to a greater extent in hyperthyroid myocardium. In conclusion, the myocardium of hyperthyroid rat appeared to exhibit decreased sensitivity to calcium as well as to the negative inotropic effect of enhanced stimulation frequency. Alterations of the processes of transsarcolemmal movement and intracellular recycling of Ca2 may be implicated.  相似文献   

14.
Platelet activation is accompanied by an increase of cytosolic free Ca2+ concentration, [Ca2+]i, (due to both extracellular Ca2+ influx and Ca2+ movements from the dense tubular system) and an Na+ influx associated with H+ extrusion. The latter event is attributable to the activation of Na+/H+ exchange, which requires Na+ in the extracellular medium and is inhibited by amiloride and its analogs. The present study was carried out to determine whether a link exists between Ca2+ transients (measured by the quin2 method and the 45CaCl2 technique) and Na+/H+ exchange activation (studied with the pH-sensitive intracellular probe, 6-carboxyfluorescein) during platelet stimulation. Washed human platelets, stimulated with thrombin and arachidonic acid, showed: (1) a large and rapid [Ca2+]i rise, mostly due to a Ca2+ influx through the plasma membrane; (2) a marked intracellular alkalinization. Both phenomena were markedly inhibited in the absence of extracellular Na+ or in the presence of an amiloride analog (EIPA). Monensin, a cation exchanger which elicits Na+ influx and alkalinization, and NH4Cl, which induces alkalinization only, were able to evoke an increase in [Ca2+]i, mostly as an influx from the extracellular medium. Our results suggest that Ca2+ influx induced by thrombin and arachidonic acid in human platelets is strictly dependent on Na+/H+-exchange activation.  相似文献   

15.
The inotropic response induced by beta-adrenergic and H1 histaminergic receptor stimulation was characterized in guinea pig left atria by obtaining dose-response relationships for isoproterenol and histamine under various experimental conditions. Conditions (hypothermia, high frequencies of stimulation, and large extracellular calcium concentrations) which enhanced the ability of cardiac muscle to develop force also increased the sensitivity of the left atrium to isoproterenol while decreasing its efficacy. On the other hand, conditions which enhanced the ability of cardiac muscle to develop force depressed the efficacy of histamine to such an extent that the sensitivity to histamine was also decreased. In addition, conditions which markedly depressed the ability of cardiac muscle to develop force also decreased the efficacy and sensitivity to histamine. The data indicate that while beta-adrenoceptor stimulation results in an inotropic response under all conditions studied, stimulation of H1 histaminergic receptors results in an inotropic response only within a narrow range of experimental conditions.  相似文献   

16.
The present study was undertaken to compare the effects of hypothyroidism and hyperthyroidism on sarcoplasmic reticulum (SR) Ca2+-pump activity, together with assessment of the functional role of SR in providing activator Ca2+ under these altered thyroid states. In response to a shift from hypothyroid to hyperthyroid state, a 10 fold and 2 fold increase in SR Ca2+-pump activity in atria and ventricles, respectively, were observed. This was associated with the 8-9 fold increases in atrial contractility (+dT/dt) and relaxation (-dT/dt), but only with a 3-4 fold increase in their ventricular counterparts. Also, the recirculation fraction of activator Ca2+ (RFA) increased to a far greater extent in atria (4 fold) than in papillary muscles, and the relative increment in inhibition of developed tension by ryanodine became 3 times larger in atria than in papillary muscles. A positive force-frequency relationship (FFR) was observed in hypothyroid atria, whereas the hyperthyroid atria, hypothyroid and hyperthyroid papillary muscles showed a negative FFR. These results suggest the greater role of transsarcolemmal (SL) Ca2+ and smaller role of SR Ca2+ in activating contraction in hypothyroid atria compared to other preparations. Thyroid hormones decrease the contribution of SL and increase that of SR in providing activator Ca2+ to the greater extent in atria than in ventricles. This effect of thyroid hormones is based on larger stimulation of SR Ca2+-pump in atria compared to ventricles.  相似文献   

17.
Treatment of suspension-cultured tobacco (Nicotiana tabacum var Xanthi) cells with cryptogein, a proteinaceous elicitor from Phytophthora cryptogea, induced a great stimulation of Ca2+ influx within the first minutes. Ca2+ influx is essential for the initiation of cryptogein-induced responses, since ethyleneglycol-bis([beta]-amino-ethyl ether)-N,N[prime]-tetraacetic acid or La3+, which block Ca2+ entrance, suppress cryptogein-induced responses such as extracellular alkalinization, active oxygen species, and phytoalexin production. Moreover, once initiated, these responses require sustained Ca2+ influx within the 1st h. A Ca2+ ionophore (A23187) was able to trigger an extracellular alkalinization but not the formation of active oxygen species and phytoalexins, even in the presence of cryptogein. Staurosporine, a protein kinase inhibitor that was recently reported to suppress cryptogein-induced responses (M.-P. Viard, F. Martin, A. Pugin, P. Ricci, J.-P. Blein [1994] Plant Physiol 104: 1245-1249), inhibited Ca2+ influx induced by cryptogein in a dose-dependent manner. These results suggest that protein phosphorylation followed by Ca2+ influx might be involved in the initial steps of cryptogein signal transduction.  相似文献   

18.
This purpose of this investigation was to determine the influence of experimental diabetes (3 months) on the responsiveness of rat isolated atria to alpha 1-adrenoceptor stimulation by phenylephrine. Diabetes was chemically induced with streptozotocin (65 mg/kg i.v.) in 42- to 43-day-old, nonfasted male Sprague-Dawley derived rats. Chronotropic (right atria) and inotropic (left atria) indices were recorded in response to alpha 1-adrenoceptor stimulation by phenylephrine. These experiments were performed in the presence of beta-adrenoceptor antagonism (timolol). Isolated right atria from diabetic rats demonstrated a greater increase in heart rate in response to phenylephrine than did corresponding control atria. Left atria were supersensitive (decrease in EC50 values) and hyperresponsive to alpha 1-adrenoceptor stimulation by phenylephrine when compared with stimulation of control left atria. Diabetic left atria in response to phenylephrine were observed to exchange more radioactive calcium (45Ca2+) than control left atria, whereas both diabetic and control left atria exchanged the same amount of 45Ca2+ during basal contractile conditions. Phenylephrine had no effect on 45Ca2+ efflux from either diabetic or control atria. These results indicate that 3 months of uncontrolled experimental diabetes in the rat produces an enhancement of alpha 1-adrenoceptor activation of isolated atria, and that there is an alteration in Ca2+ mobilization which may contribute to the enhanced receptor activation.  相似文献   

19.
The aim of the present study has been to characterize the regulation by opiates of 45Ca2+ influx in rat spinal cord-dorsal root ganglion cocultures. We have demonstrated that K+-induced depolarization, in the presence of the Ca2+ channel agonist Bay K8644, stimulated Ca2+ influx (3-4-fold) via the dihydropyridine class of voltage-dependent Ca2+ channels. While mu and delta opiates had no effect, kappa opiate agonists (e.g. U50488, dynorphin) profoundly depressed the stimulated Ca2+ influx (86% inhibition at 100 microM U50488). The kappa agonist action was stereospecific and could be reversed by the opiate antagonist naloxone. The inhibition produced by kappa agonists was greatly diminished following pertussis toxin treatment, and this effect was accompanied by toxin-induced ADP-ribosylation of a 40-41-kDa protein. This suggests that kappa opiate receptors are negatively coupled to voltage-dependent Ca2+ channels, via a pertussis toxin-sensitive GTP-binding protein. Basal 45Ca2+ uptake, stimulated by adenylate cyclase activators (forskolin and cholera toxin), was potently inhibited by kappa opiates suggesting that, under conditions of neurohormonal stimulation of adenylate cyclase, kappa receptors are coupled to Ca2+ channels indirectly via the adenylate cyclase complex. In addition, cAMP-independent coupling pathways may also be involved.  相似文献   

20.
The effect of bradykinin on intracellular free Ca2+ and neurotransmitter secretion was investigated in the rat pheochromocytoma cell line PC12. Bradykinin was shown to induce a rapid, but transient, increase in intracellular free Ca2+ which could be separated into an intracellular Ca2+ release component and an extracellular Ca2+ influx component. The bradykinin-induced stimulation of intracellular free Ca2+ displayed a similar time course, concentration dependencies and extracellular Ca2+ dependence as that found for neurotransmitter release, indicating an association between intracellular free Ca2+ levels and neurotransmitter secretion. The selective BK1-receptor antagonist des-Arg9,[Leu8]BK (where BK is bradykinin) did not significantly affect the stimulation of intracellular free Ca2+ or neurotransmitter release. In contrast, these effects of bradykinin were effectively blocked by the selective BK2-receptor antagonist [Thi5,8,D-Phe7]BK, and mimicked by the BK2 partial agonist [D-Phe7]BK in a concentration-dependent manner. The stimulation of intracellular free Ca2+ and neurotransmitter release induced by bradykinin was shown not to involve voltage-sensitive Ca2+ channels, since calcium antagonists had no effect on either response at concentrations which effectively inhibit depolarization-induced responses. These results indicate that bradykinin, acting through the interaction with the BK2 receptor, stimulates an increase in intracellular free Ca2+ leading to neurotransmitter secretion. Furthermore, bradykinin-induced responses involve the release of intracellular Ca2+ and the influx of extracellular Ca2+ that is not associated with the activation of voltage-sensitive Ca2+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号