首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 923 毫秒
1.
Both carbohydrate monomers l-gulose and l-galactose are rarely found in nature, but are of great importance in pharmacy R&D and manufacturing. A method for the production of l-gulose and l-galactose is described that utilizes recombinant Escherichia coli harboring a unique mannitol dehydrogenase. The recombinant E. coli system was optimized by genetic manipulation and directed evolution of the recombinant protein to improve conversion. The resulting production process requires a single step, represents the first readily scalable system for the production of these sugars, is environmentally friendly, and utilizes inexpensive reagents, while producing l-galactose at 4.6 g L−1 d−1 and l-gulose at 0.90 g L−1 d−1.  相似文献   

2.
Auricyanide [Au(CN)4] interaction with biologically important thiols, thioether and selenoether were carried out and monitored using 1H, 13C NMR and UV spectroscopy. These ligands include l-cysteine, glutathione, captopril, l-methionine and dl-seleno-methionine. Thiols show very strong affinity to be oxidized into the disulfide by auricyanide, which gets reduced to aurocyanide [Au(CN)2]. l-cysteine reaction mechanism with [Au(CN)4] was found to be dependent on reactants mole ratio. While l-methionine was completely inert toward auricyanide, dl-Se-methionine showed some reactivity with [Au(CN)4] after raising solution pH to 12 that facilitated cyanide exchange.  相似文献   

3.
This work describes the electrochemical and electrocatalytic properties of carbon ceramic electrode (CCE) modified with lead nitroprusside (PbNP) nanoparticles as a new electrocatalyst material. The structure of deposited film on the CCE was characterized by energy dispersive X-ray (EDX), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM). The cyclic voltammogram (CV) of the PbNP modified CCE showed two well-defined redox couples due to [Fe(CN)5NO]3−/[Fe(CN)5NO]2− and PbIV/PbII redox reactions. The modified electrode showed electrocatalytic activity toward the oxidation of l-cysteine and was used as an amperometric sensor. Also, to reduce the fouling effect of l-cysteine and its oxidation products on the modified electrode, a thin film of Nafion was coated on the electrode surface. The sensor response was linearly changed with l-cysteine concentration in the range of 1 × 10−6 to 6.72 × 10−5 mol L−1 with a detection limit (signal/noise ratio [S/N] = 3) of 0.46 μM. The sensor sensitivity was 0.17 μA (μM)−1, and some important advantages such as simple preparation, fast response, good stability, interference-free signals, antifouling properties, and reproducibility of the sensor for amperometric determination of l-cysteine were achieved.  相似文献   

4.
Two lanthanide(III) complexes with l-glutamate ligands [{Ln2(l-Glu)2(H2O)8} · 4(ClO4) · 2.5H2O]n (Ln = Gd (1), Eu (2)) have been prepared and characterized by single-crystal X-ray diffraction. The compounds are isomorphous with infinite cationic 2D layers stacked together by secondary bonds. The building blocks are slightly different non-centrosymmetric dinuclear units placed in alternating layers, the resulting structures thus containing four non-equivalent Ln metal sites. The dinuclear units contain a fourfold bridge, two in the η112 and two in the η212 modes, from two α- and two γ-carboxylates of four different l-Glu residues, respectively.  相似文献   

5.
Three homochiral metal-organic coordination networks [Co2(l-Trp)2(Py)6] · Py · (ClO4)2 (1), [Ni(l-Trp)(Py)3] · H2O · ClO4 (2) and [Co2(l-Trp)(INT)2(H2O)2(ClO4)] (3), all containing natural amino acid l-HTrp (l-typtophan), were hydrothermally synthesized and structurally characterized. The compounds 1 and 2 crystallize in the orthorhombic space group C2221, with a = 10.731(2) Å, b = 19.709(4) Å, c = 27.365(6) Å and Z = 4 for 1 and a = 10.710(10) Å, b = 20.088(18) Å, c = 27.63(3) Å and Z = 8 for 2, respectively. The compound 3 has the monoclinic space group P21, with a = 8.1934(14) Å, b = 13.209(2) Å, c = 12.464(2) Å, β = 104.107(3)° and Z = 2. Both 1 and 2 consist of 1D helical chains. Compound 3 is composed of 2D networks, which further assemble into a 3D supramolecular structure via weak interlayer interactions. The optically pure amino acid l-HTrp plays an important role leading to homochiral structures reported here.  相似文献   

6.
In this work, we fabricated a sensitivity chronocoulometric DNA sensor (CDS) based on gold nanoparticles (AuNPs)/poly(l-lysine) complex film modified glassy carbon electrode. Hexaammineruthenium(III) chloride ([Ru(NH3)6]3+) was used as the electroactive indicator. The assembled process was investigated by cyclic voltammetry (CV) and chronocoulometry (CC). CC is used to monitor the DNA hybridization event by measurement of electrostatic binding [Ru(NH3)6]3+. Under the optimal conditions, the signal of [Ru(NH3)6]3+ was linear with the logarithm of the concentration of the complementary oligonucleotides from 1.0 × 10−13 to 1.0 × 10−11 M, and the detection limit is 3.5 × 10−14 M.  相似文献   

7.
A series of pyrazolyl palladium(II), platinum(II) and gold(III) complexes, [PdCl2(3,5-R2bpza)] {R = H (1), R = Me (2), bpza = bis-pyrazolyl acetic acid}, [PtCl2(3,5-R2bpza)] {R = H (3a), R = Me (4)}, [AuCl2(3,5-R2bpza)]Cl {R = H (5a), R = Me (6a)} and [PdCl2(3,5-R2bpzate)] {R = Me (7)} have been synthesised and structurally characterised. Single crystal X-ray crystallography showed that the pyrazolyl ligands exhibit N^N-coordination with the metals. Anticancer activities of six complexes 1-6a were investigated against CHO cells and were found to have low activities. Substitution reactions of selected complexes 1, 2, 3a and 5a with l-cysteine show that the low anticancer activities compounds and that the rate of substitution with sulfur-containing compounds is not the cause of the low anticancer activities.  相似文献   

8.
Dominik Mojzita 《FEBS letters》2010,584(16):3540-3544
l-Xylulose reductase is part of the eukaryotic pathway for l-arabinose catabolism. A previously identified l-xylulose reductase in Hypocrea jecorina turned out to be not the ‘true’ one since it was not upregulated during growth on l-arabinose and the deletion strain showed no reduced l-xylulose reductase activity but instead lost the d-mannitol dehydrogenase activity [17]. In this communication we identified the ‘true’ l-xylulose reductase in Aspergillus niger. The gene, lxrA (JGI177736), is upregulated on l-arabinose and the deletion results in a strain lacking the NADPH-specific l-xylulose reductase activity and having reduced growth on l-arabinose. The purified enzyme had a Km for l-xylulose of 25 mM and a νmax of 650 U/mg.  相似文献   

9.
A series of O-alkyl derivatives of cyclodextrin: heksakis[2,3,6-tri-O-(2′-methoxyethyl)]-α-cyclodextrin; heksakis(2,3-di-O-methyl)-α-cyclodextrin; heptakis(2,3-di-O-methyl)-β-cyclodextrin; heksakis[2,3-di-O-methyl-6-O-(2′-methoxyethyl)]-α-cyclodextrin; heptakis[2,3-di-O-methyl-6-O-(2′-methoxyethyl)]-β-cyclodextrin; heksakis[2,3-di-O-(2′-methoxyethyl)]-α-cyclodextrin and heptakis[2,3-di-O-(2′-methoxyethyl)]-β-cyclodextrin have been synthesized. Purity and composition of the obtained substances were examined. The cyclodextrin derivatives listed above as well as (2-hydroxypropyl)-α-cyclodextrin and (2-hydroxypropyl)-β-cyclodextrin, the two commercially available ones, have been investigated as the additives in the course of enzymatic decomposition of l-tryptophan by l-tryptophan indole-lyase. It has been found that each of cyclodextrin derivatives causes the inhibition of enzymatic process, both competitive and non-competitive. The competitive inhibition is connected with the formation of inclusion complexes between cyclodextrins and l-tryptophan, related to the geometry of these complexes. The mechanism of the non-competitive inhibition is not so evident; it could be related to the formation of the cyclodextrin complexes on the surface of the enzyme, leading to the change in the flexibility of the enzyme molecule.  相似文献   

10.
A family of neutral and solvent-free bis(amidinate) rare earth metal amide complexes with a general formula [RC(N-2,6-Me2C6H3)2]2LnN(SiMe3)2 (R = phenyl (Ph), Ln = Y (1), Nd (2); R = cyclohexyl (Cy), Ln = Y (3), Nd (4)) were synthesized in high yields by one-pot salt metathesis reaction of anhydrous LnCl3, amidinate lithium salt [RC(N-2,6-Me2C6H3)2]Li, and NaN(SiMe3)2 in THF at room temperature. Single crystal structural determination of complexes 1, 2 and 4 revealed that the central metal adopts distorted pyramidal geometry. In the presence of 1 equivalent of iPr-OH, all these complexes were active for l-lactide polymerization in toluene at 70 °C to give high molecular weight (Mn > 104) polymers.  相似文献   

11.
Reaction of fresh Mn(OH)2 precipitate and S-carboxymethyl-l-cysteine (H2SCMC) in aqueous solution afforded a novel chiral 3D coordination polymer Mn(H2O)(SCMC) 1, which crystallizes in the acentric polar space group P21 with cell constants = 5.079(1) Å, = 9.617(2) Å, = 8.649(2) Å, β = 94.40(3)°, = 421.2(1) Å3, = 2, and exhibit a SHG effect and ferroelectricity (a remnant polarization Pr = 0.0159 uC cm−2, coercive field Ec = 0.83 kV cm−2, saturation of the spontaneous polarization Ps = 0.234 uC cm−2). To the best of our knowledge, the present compound represents the first example of S-carboxymethyl-l-cysteine coordination polymers that exhibit possible ferroelectric behavior. The structural analysis revealed that the Mn2+ ions in 1 are each coordinated by one N atom and five O atoms of four S-carboxymethyl-l-cysteine ligand bridges four symmetry-related Mn2+ ions to form 3D MOF of 66 topology type with irregular chiral channels extending along [1 0 0]. The temperature-dependent magnetic susceptibilities shows that 1 obeys Curie-Weiss law χm = C/(T − Θ) with C = 4.23 cm3 mol−1 K and Θ = −5.86 K and the best fit gave a weak antiferromagnetic coupling (J = −0.282(5) cm−1) among Mn ions.  相似文献   

12.
In order to ascertain whether and how mitochondria can produce hydrogen peroxide (H2O2) as a result of l-lactate addition, we monitored H2O2 generation in rat liver mitochondria and in submitochondrial fractions free of peroxisomal and cytosolic contamination. We found that H2O2 is produced independently on the respiratory chain with 1:1 stoichiometry with pyruvate, due to a putative flavine-dependent l-lactate oxidase restricted to the intermembrane space. The l-lactate oxidase reaction shows a hyperbolic dependence on l-lactate concentration and is inhibited by NAD+ in a competitive manner, being the enzyme different from the l-lactate dehydrogenase isoenzymes as shown by their pH profiles.  相似文献   

13.
Reduction of the model platinum(IV) complexes cis-[PtCl4(NH3)2] (1), trans-[PtCl4(NH3)2] (2), trans-[PtCl2(en)2]2+ (3), trans-[PtBr2(NH3)4]2+ (4), [PtCl6]2− (5), and [PtBr6]2− (6) with l-ascorbic acid (H2Asc) in 1.0 M aqueous medium at 25 °C in the region 1.75≤pH≤7.20 has been investigated using stopped-flow spectrophotometry. The redox reactions follow the rate law: −d[Pt(IV]/dt=k[H2Asc]tot[Pt(IV)] where k is a pH-dependent second-order rate constant and [H2Asc]tot, the total concentration of ascorbic acid. The pH-dependence of k is attributed to parallel reduction of Pt(IV) by the protolytic species HAsc and Asc2−. Analysis of the kinetics data reveals that the ascorbate anion Asc2− is up to seven orders of magnitude more reactive than HAsc while H2Asc is unreactive. Electron transfer from HAsc/Asc2− to the Pt(IV) compounds is suggested to take place by a mechanism involving a reductive attack on any one of the mutually trans-halide ligands by Asc2− and/or HAsc forming a halide-bridged activated complex. The rapid reduction of these complexes supports the assumption that ascorbate Asc2− might be an important reductant at physiological conditions for anticancer active Pt(IV) pro-drugs capable of undergoing reductive trans elimination. The parameters ΔH and ΔS for reduction of Pt(IV) with Asc2− have been determined from the study of the temperature dependence of k.  相似文献   

14.
Recently, we reported that YghZ from Escherichia coli functions as an efficient l-glyceraldehyde 3-phosphate reductase (Gpr). Here we show that Gpr co-purifies with a b-type heme cofactor. Gpr associates with heme in a 1:1 stoichiometry to form a complex that is characterized by a Kd value of 5.8 ± 0.2 μM in the absence of NADPH and a Kd value of 11 ± 1.3 μM in the presence of saturating NADPH. The absorbance spectrum of reconstituted Gpr indicates that heme is bound in a hexacoordinate low-spin state under both oxidizing and reducing conditions. The physiological function of heme association with Gpr is unclear, as the l-glyceraldehyde 3-phosphate reductase activity of Gpr does not require the presence of the cofactor. Bioinformatics analysis reveals that Gpr clusters with a family of putative monooxygenases in several organisms, suggesting that Gpr may act as a heme-dependent monooxygenase. The discovery that Gpr associates with heme is interesting because Gpr shares 35% amino acid identity with the mammalian voltage-gated K+ channel β-subunit, an NADPH-dependent oxidoreductase that endows certain voltage-gated K+ channels with hemoprotein-like, O2-sensing properties. To date the molecular origin of O2 sensing by voltage-gated K+ channels is unknown and the results presented herein suggest a role for heme in this process.  相似文献   

15.
Four different mononuclear octahedral Ni(II) complexes with protonated and deprotonated form of the same ligand have been synthesized by controlling reaction conditions and structurally characterized. The complexes are [Ni(HLl-his)(benzoate)(MeOH)] (1), [Ni(HLl-his)(SCN)(MeOH)] (2), [Ni(HLl-his)2] (3) and [Ni(Ll-his)(imidazole)2] (4) where H2Ll-his is (S)-2-(2-hydroxybenzylamino)-3-(1H-imidazol-4-yl)-propionic acid. The ligand behaves as a monobasic tetradentate ligand in 1 and 2, monobasic tridentate ligand in 3 and dibasic tetradentate ligand in 4. Ni(II) coordinated phenolic proton of the ligand in the complexes 1-2 shows strong intra-molecular H-bonding with benzoate in 1 and lattice water in 2, whereas 3 shows intermolecular H-bonding between uncoordinated phenols with neighbouring carboxylate. The pH titration of the complexes revealed that metal coordination and H-bond in complexes 1 and 2 considerably lowers the acidity of ligand phenol (pKa 6.8 and 7.0 respectively) compared to phenol (pKa 10). The complex 4 does not show any proton loss due to the absence of phenolic proton. All the complexes show extensive H-bonded network in the crystals including narrow (7.8 × 5.2 Å) water filled one dimensional channel in 2.  相似文献   

16.
The fibrous polymer-supported sulfonic acid catalyst Smopex-101 H+ proved to be an efficient catalyst for the preparation of O-isopropylidene derivatives from a series of rare sugars. Acetonation of the reducing sugars l-arabinose, l-ribose, l-xylose, l-fucose, and l-rhamnose in N,N-dimethylformamide by 2,2-dimethoxypropane or 2-methoxypropene led to the formation of the kinetically favored di-O- and/or mono-O-isopropylidene derivatives in 46-88% yields. The method consists of a simple experimental procedure which does not require predried solvents or reagents. The catalyst is easily recovered and can be regenerated making the procedure economically viable even for large-scale synthesis.  相似文献   

17.
A novel adsorbent of carboxymethyl-β-cyclodextrin modified nanometer TiO2 (CM-β-CD/TiO2) was prepared and used as a solid-phase extraction (SPE) material coupled to fluorescence spectroscopy determination of l-tryptophan (l-Trp) in biological samples. The experimental conditions for modified nanometer TiO2 separation/preconcentration of l-Trp were optimized. The adsorption capacity of CM-β-CD/TiO2 for l-Trp was 75.2 μg/g. The linear range, detection limit (DL), and the relative standard deviation (RSD) were 0.10-1.20 μg/mL, 18.8 ng/mL, and 0.67% (n = 3, 1.0 μg/mL), respectively, with a preconcentration factor of 10. The developed method was applied to determination of l-Trp in real samples and the recoveries were found to be in the range of 99.2-100.3%. For validation, a comparison material of NIC-140686 sample was analyzed and the determined value was in good agreement with the certified value.  相似文献   

18.
Kitasatospora kifunensis, the talosin producer, was used as a source for the dTDP-6-deoxy-l-talose (dTDP-6dTal) biosynthetic gene cluster, serving as a template for four recombinant proteins of RmlAKkf, RmlBKkf, RmlCKkf, and Tal, which complete the biosynthesis of dTDP-6dTal from dTTP, α-d-glucose-1-phosphate, and NAD(P)H. The identity of dTDP-6dTal was validated using 1H and 13C NMR spectroscopy. K. kifunensistal and tll, the known dTDP-6dTal synthase gene of Actinobacillus actinomycetemcomitans origin, have low sequence similarity and are distantly related within the NDP-6-deoxy-4-ketohexose reductase family, providing an example of the genetic diversity within the dTDP-6dTal biosynthetic pathway.  相似文献   

19.
Six Schiff base derivatives of d-mannitol, 1,6-dideoxy-1,6-bis-{[(E)-arylmethylidene]amino}-d-mannitol (6: aryl = XC6H4: X = o-, m- and p- Cl or NO2), have been synthesized and evaluated for their in vitro antibacterial activity against Mycobacterium tuberculosis H37Rv using the Alamar Blue susceptibility test and the activity expressed as the minimum inhibitory concentration (MIC) in μg/mL. All three nitro derivatives exhibit significant activities: activities of (6d: X = o-NO2), (6e: X = m-NO2) and (6f: X = p-NO2) are 12.5, 25.0 and 25.0 μg/mL, respectively. When compared with first line drugs, such as ethambutol, they can be considered as a good starting point to develop new lead compounds for the treatment of multidrug-resistant tuberculosis. Characterization of the new compounds 6 is generally achieved spectroscopically. The structure of compound 3 has been confirmed by X-ray crystallography.  相似文献   

20.
Ternary l-glutamine (l-gln) copper(II) complexes [Cu(l-gln)(B)(H2O)](X) (B = 2,2′-bipyridine (bpy), , 1; B = 1,10-phenanthroline (phen), , 2) and [Cu(l-gln)(dpq)(ClO4)] (3) (dpq, dipyridoquinoxaline) are prepared and characterized by physicochemical methods. The DNA binding and cleavage activity of the complexes have been studied. Complexes 1-3 are structurally characterized by X-ray crystallography. The complexes show distorted square pyramidal (4+1) CuN3O2 coordination geometry in which the N,O-donor amino acid and the N,N-donor heterocyclic base bind at the basal plane with a H2O or perchlorate as the axial ligand. The crystal structures of the complexes exhibit chemically significant hydrogen bonding interactions besides showing coordination polymer formation. The complexes display a d-d electronic band in the range of 610-630 nm in aqueous-dimethylformamide (DMF) solution (9:1 v/v). The quasireversible cyclic voltammetric response observed near −0.1 V versus SCE in DMF-TBAP is assignable to the Cu(II)/Cu(I) couple. The binding affinity of the complexes to calf thymus (CT) DNA follows the order: 3 (dpq) > 2 (phen) ? 1 (bpy). Complexes 2 and 3 show DNA cleavage activity in dark in the presence of 3-mercaptopropionic acid (MPA) as a reducing agent via a mechanistic pathway forming hydroxyl radical as the reactive species. The dpq complex 3 shows efficient photo-induced DNA cleavage activity on irradiation with a monochromatic UV light of 365 nm in absence of any external reagent. The cleavage efficiency of the DNA minor groove binding complexes follows the order: 3 > 2 ? 1. The dpq complex exhibits photocleavage of DNA on irradiation with visible light of 647.1 nm. Mechanistic data on the photo-induced DNA cleavage reactions reveal the involvement of singlet oxygen (1O2) as the reactive species in a type-II pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号