首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The viral replication factors E1 and E2 of papillomaviruses are necessary and sufficient to replicate plasmids containing the minimal origin of DNA replication in transient assays. Under physiological conditions, the upstream regulatory region (URR) governs expression of the early viral genes. To determine the effect of URR elements on E1 and E2 expression specifically, and on the regulation of DNA replication during the various phases of the viral life cycle, we carried out a systematic replication study with entire genomes of human papillomavirus type 31 (HPV31), a high-risk oncogenic type. We constructed a series of URR deletions, spacer replacements, and point mutations to analyze the role of the keratinocyte enhancer (KE) element, the auxiliary enhancer (AE) domain, and the L1-proximal end of the URR (5′-URR domain) in DNA replication during establishment, maintenance, and vegetative viral DNA amplification. Using transient and stable replication assays, we demonstrate that the KE and AE are necessary for efficient E1 and E2 gene expression and that the KE can also directly modulate viral replication. KE-mediated activation of replication is dependent on the position and orientation of the element. Mutation of either one of the four Ap1 sites, the single Sp1 site, or the binding site for the uncharacterized footprint factor 1 reduced replication efficiency through decreased expression of E1 and E2. Furthermore, the 5′-URR domain and the Oct1 DNA binding site are dispensable for viral replication, since such HPV31 mutants are able to replicate efficiently in a transient assay, maintain a stable copy number over several cell generations, and amplify viral DNA under vegetative conditions. Interestingly, deletion of the 5′-URR domain leads to increased transient and stable replication levels. These findings suggest that elements in the HPV31 URR outside the minimal origin modulate viral replication through both direct and indirect mechanisms.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
The oncoproteins E6 and E7 of human papillomavirus type 38 (HPV38) display several transforming activities in vitro, including immortalization of primary human keratinocytes. To evaluate the oncogenic activities of the viral proteins in an in vivo model, we generated transgenic mice expressing HPV38 E6 and E7 under the control of the bovine homologue of the human keratin 10 (K10) promoter. Two distinct lines of HPV38 E6/E7-expressing transgenic mice that express the viral genes at different levels were obtained. In both lines, HPV38 E6 and E7 induced cellular proliferation, hyperplasia, and dysplasia in the epidermis. The rate of occurrence of these events was proportional to the levels of HPV38 E6 and E7 expression in the two transgenic lines. Exposure of the epidermis of nontransgenic mice to UV led to p21WAF1 accumulation and cell cycle arrest. In contrast, keratinocytes from transgenic mice continued to proliferate and were not positive for p21WAF1, indicating that cell cycle checkpoints are altered in keratinocytes expressing the viral genes. Although the HPV38 E6/E7-expressing transgenic mice did not develop spontaneous tumors during their life span, two-stage carcinogen treatment led to a high incidence of papillomas, keratoacanthomas, and squamous-cell carcinomas in HPV38 mice compared with nontransgenic animals. Together, these data show that HPV38 E6 and E7 display transforming properties in vivo, providing further support for the role of HPV38 in carcinogenesis.  相似文献   

13.
14.
15.
Cdc7-Dbf4 kinase complexes, conserved widely in eukaryotes, play essential roles in initiation and progression of the S phase. Cdc7 kinase activity fluctuates during cell cycle, and this is mainly the result of oscillation of expression of the Dbf4 subunit. Therefore, it is crucial to understand the mechanisms of regulation of Dbf4 expression. We have isolated and characterized the promoter region of the human ASK gene encoding Dbf4-related regulatory subunit for human Cdc7 kinase. We have identified a 63-base pair ASK promoter segment, which is sufficient for mediating growth stimulation. This minimal promoter segment (MP), containing an Sp1 site but no canonical E2F site, can be activated by ectopic E2F expression as well. Within the 63-base pair region, the Sp1 site as well as other elements are essential for stimulation by growth signals and by E2F, whereas an AT-rich sequence proximal to the coding region may serve as an element required for suppression in quiescence. Gel shift assays in the presence of an antibody demonstrate the presence of E2F1 in the protein-DNA complexes generated on the MP segment. However, the complex formation on MP was not competed by a DHFR promoter fragment, known to bind to E2F, nor by a consensus E2F binding oligonucleotide. Gel shift assays with point mutant MP fragments indicate that a non-canonical E2F site in the middle of this segment is critical for generation of the E2F complex. Our results suggest that E2F regulates the ASK promoter through an atypical mode of recognition of the target site.  相似文献   

16.
We investigated the transforming activity of human papillomavirus type 8 (HPV8) by expressing all early open reading frames from a heterologous promoter in different rodent fibroblast lines. Morphological transformation was observed only in G418-selected mouse C127 and Rat 1 cells containing an intact E6-coding region. E6 of HPV8 did not transform NIH 3T3 cells as did E6 of bovine papillomavirus type 1. C127 cells transformed by E6 were anchorage independent and had a reduced serum requirement but did not form tumors in nude mice. E7 of HPV8 showed no transforming potential, in contrast to E7 of HPV18 and HPV16. It was, however, able to complement an E7 mutant of bovine papillomavirus type 1 with a defect in high-copy-number DNA maintenance. The data indicate that the expression of the HPV8 E6 open reading frame is sufficient to induce morphological transformation in rodent fibroblasts, whereas E7 is involved in the replication of the viral DNA.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号