首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most infants who are later diagnosed with autism show delayed speech and language and/or atypical language profile. There is a large body of research on abnormal speech and language in children with autism. However, auditory development has been relatively under-investigated in autism research, despite its inextricable relationship with language development and despite researchers' ability to detect abnormalities in brain development and behavior in early infancy. In this review, we synthesize research on auditory processing in the prenatal period through infancy and childhood in typically developing children, children at high risk for autism, and children diagnosed with autism. We conclude that there are clear neurobiological and behavioral links between abnormal auditory development and the deficits in social communication seen in autism. We then offer perspectives on the need for a systematic characterization of early auditory development in autism, and identified questions to be addressed in future research on the development of autism.  相似文献   

2.
In this review, we focus on the role of the Shank family of proteins in autism. In recent years, autism research has been flourishing. With genetic, molecular, imaging and electrophysiological studies being supported by behavioural studies using animal models, there is real hope that we may soon understand the fundamental pathology of autism. There is also genuine potential to develop a molecular-level pharmacological treatment that may be able to deal with the most severe symptoms of autism, and clinical trials are already underway. The Shank family of proteins has been strongly implicated as a contributing factor in autism in certain individuals and sits at the core of the alleged autistic pathway. Here, we analyse studies that relate Shank to autism and discuss what light this sheds on the possible causes of autism.  相似文献   

3.
The behaviors of autism overlap with a diverse array of other neurological disorders, suggesting common molecular mechanisms. We conducted a large comparative analysis of the network of genes linked to autism with those of 432 other neurological diseases to circumscribe a multi-disorder subcomponent of autism. We leveraged the biological process and interaction properties of these multi-disorder autism genes to overcome the across-the-board multiple hypothesis corrections that a purely data-driven approach requires. Using prior knowledge of biological process, we identified 154 genes not previously linked to autism of which 42% were significantly differentially expressed in autistic individuals. Then, using prior knowledge from interaction networks of disorders related to autism, we uncovered 334 new genes that interact with published autism genes, of which 87% were significantly differentially regulated in autistic individuals. Our analysis provided a novel picture of autism from the perspective of related neurological disorders and suggested a model by which prior knowledge of interaction networks can inform and focus genome-scale studies of complex neurological disorders.  相似文献   

4.
In this study, we examined the frequency of sensory-related issues as reported by parents in a large sample of school-age adolescents and adults with autism/autism spectrum disorder (ASD) [1] as compared to a group of individuals receiving similar clinical evaluations for developmental/behavioral difficulties but whose final diagnoses were not on the autism spectrum. In no comparison were the features examined predictive of autism or autism spectrum in comparison to the non-ASD sample. Only failure to respond to noises had sensitivity above .75 in the comparison of the broader autism spectrum group, but specificity was poor. While sensory issues are relatively common in autism/ASD, they are also frequent in other disorders. These results question the rationale for including sensory items as a diagnostic criterion for autism.  相似文献   

5.
Essential fatty acids and phospholipase A2 in autistic spectrum disorders   总被引:2,自引:0,他引:2  
A health questionnaire based on parental observations of clinical signs of fatty acid deficiency (FAD) showed that patients with autism and Asperger's syndrome (ASP) had significantly higher FAD scores (6.34+/-4.37 and 7.64+/-6.20, respectively) compared to controls (1.78+/-1.68). Patients with regressive autism had significantly higher percentages of 18:0,18:2n-6 and total saturates in their RBC membranes compared to controls, while 24:0, 22:5n-6, 24:1 and the 20:4n-6/20:5n-3 ratio were significantly higher in both regressive autism and ASP groups compared to controls. By comparison, the 18:1n-9 and 20:4n-6 values were significantly lower in patients with regressive autism compared to controls while 22:5n-3, total n-3 and total dimethyl acetals were significantly lower in both regressive autism and ASP groups compared to controls. Storage of RBC at -20 degrees C for 6 weeks resulted in significant reductions in highly unsaturated fatty acid levels in polar lipids of patients with regressive autism, compared to patients with classical autism or ASP, or controls. Patients diagnosed with both autism and ASP showed significantly increased levels of EPA ( approximately 200%) and DHA ( approximately 40%), and significantly reduced levels of ARA ( approximately 20%), 20:3n-6 and ARA/EPA ratio in their RBC polar lipids, when supplemented with EPA-rich fish oils, compared to controls and non-supplemented patients with autism. Patients with both regressive autism and classical autism/Asperger's syndrome had significantly higher concentrations of RBC type IV phospholipase A2 compared to controls. However, patients with autism/ASP, who had taken EPA supplements, had significantly reduced PLA2 concentrations compared to unsupplemented patients with classical autism or ASP.  相似文献   

6.
Identification of common molecular pathways affected by genetic variation in autism is important for understanding disease pathogenesis and devising effective therapies. Here, we test the hypothesis that rare genetic variation in the metabotropic glutamate-receptor (mGluR) signaling pathway contributes to autism susceptibility. Single-nucleotide variants in genes encoding components of the mGluR signaling pathway were identified by high-throughput multiplex sequencing of pooled samples from 290 non-syndromic autism cases and 300 ethnically matched controls on two independent next-generation platforms. This analysis revealed significant enrichment of rare functional variants in the mGluR pathway in autism cases. Higher burdens of rare, potentially deleterious variants were identified in autism cases for three pathway genes previously implicated in syndromic autism spectrum disorder, TSC1, TSC2, and SHANK3, suggesting that genetic variation in these genes also contributes to risk for non-syndromic autism. In addition, our analysis identified HOMER1, which encodes a postsynaptic density-localized scaffolding protein that interacts with Shank3 to regulate mGluR activity, as a novel autism-risk gene. Rare, potentially deleterious HOMER1 variants identified uniquely in the autism population affected functionally important protein regions or regulatory sequences and co-segregated closely with autism among children of affected families. We also identified rare ASD-associated coding variants predicted to have damaging effects on components of the Ras/MAPK cascade. Collectively, these findings suggest that altered signaling downstream of mGluRs contributes to the pathogenesis of non-syndromic autism.  相似文献   

7.
Mathematical Talent is Linked to Autism   总被引:1,自引:0,他引:1  
A total of 378 mathematics undergraduates (selected for being strong at “systemizing”) and 414 students in other (control) disciplines at Cambridge University were surveyed with two questions: (1) Do you have a diagnosed autism spectrum condition? (2) How many relatives in your immediate family have a diagnosed autism spectrum condition? Results showed seven cases of autism in the math group (or 1.85%) vs one case of autism in the control group (or 0.24%), a ninefold difference that is significant. Controlling for sex and general population sampling, this represents a three- to sevenfold increase for autism spectrum conditions among the mathematicians. There were 7 of 1,405 (or 0.5%) cases of autism in the immediate families of the math group vs 2 of 1,669 (or 0.1%) cases in the immediate families of the control group, which again is a significant difference. These results confirm a link between autism and systemizing, and they suggest this link is genetic given the association between autism and first-degree relatives of mathematicians.  相似文献   

8.
Exposure to environmental mercury has been proposed to play a part in autism. Mercury is selectively taken up by the human locus ceruleus, a region of the brain that has been implicated in autism. We therefore looked for the presence of mercury in the locus ceruleus of people who had autism, using the histochemical technique of autometallography which can detect nanogram amounts of mercury in tissues. In addition, we sought evidence of damage to locus ceruleus neurons in autism by immunostaining for hyperphosphorylated tau. No mercury was found in any neurons of the locus ceruleus of 6 individuals with autism (5 male, 1 female, age range 16–48 years). Mercury was present in locus ceruleus neurons in 7 of 11 (64 %) age-matched control individuals who did not have autism, which is significantly more than in individuals with autism. No increase in numbers of locus ceruleus neurons containing hyperphosphorylated tau was detected in people with autism. In conclusion, most people with autism have not been exposed early in life to quantities of mercury large enough to be found later in adult locus ceruleus neurons. Human locus ceruleus neurons are sensitive indicators of mercury exposure, and mercury appears to remain in these neurons indefinitely, so these findings do not support the hypothesis that mercury neurotoxicity plays a role in autism.  相似文献   

9.
More than a hundred de novo single gene mutations and copy‐number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism‐relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism.  相似文献   

10.
There is widespread hope that the discovery of valid biomarkers for autism will both reveal the causes of autism and enable earlier and more targeted methods for diagnosis and intervention. However, growing enthusiasm about recent advances in this area of autism research needs to be tempered by an awareness of the major scientific challenges and the important social and ethical concerns arising from the development of biomarkers and their clinical application. Collaborative approaches involving scientists and other stakeholders must combine the search for valid, clinically useful autism biomarkers with efforts to ensure that individuals with autism and their families are treated with respect and understanding.  相似文献   

11.
Autism is a neurodevelopmental disorder with unknown etiology. In some cases, typically developing children regress into clinical symptoms of autism, a condition known as regressive autism. Protein kinases are essential for G-protein-coupled receptor-mediated signal transduction, and are involved in neuronal functions, gene expression, memory, and cell differentiation. Recently, we reported decreased activity of protein kinase A (PKA) in the frontal cortex of subjects with regressive autism. In the present study, we analyzed the activity of protein kinase C (PKC) in the cerebellum and different regions of cerebral cortex from subjects with regressive autism, autistic subjects without clinical history of regression, and age-matched control subjects. In the frontal cortex of subjects with regressive autism, PKC activity was significantly decreased by 57.1% as compared to age-matched control subjects (p = 0.0085), and by 65.8% as compared to non-regressed autistic subjects (p = 0.0048). PKC activity was unaffected in the temporal, parietal and occipital cortices, and in the cerebellum in both autism groups, i.e., regressive and non-regressed autism as compared to control subjects. These results suggest brain region-specific alteration of PKC activity in the frontal cortex of subjects with regressive autism. Further studies showed a negative correlation between PKC activity and restrictive, repetitive and stereotyped pattern of behavior (r= -0.084, p = 0.0363) in autistic individuals, suggesting involvement of PKC in behavioral abnormalities in autism. These findings suggest that regression in autism may be attributed, in part, to alterations in G-protein-coupled receptor-mediated signal transduction involving PKA and PKC in the frontal cortex.  相似文献   

12.
Accumulating evidence indicates that long non-coding RNAs (lncRNAs) play an important role in autism. Herein, we delineated the functions of LOC101927196 and its potential mitigation effect on a rat model of autism. We retrieved various bioinformatics databases and websites to screen differentially expressed lncRNAs associated with autism. Next, a rat model of autism was established with the neuron cells extracted for transfection of different plasmids. The regulatory effect of LOC101927196 on neuron cell proliferation, apoptosis as well as oxidative stress was also investigated. Firstly, microarray dataset GSE18123 revealed that LOC101927196 was poorly expressed in a rat model of autism. Poor development and growth and oxidative stress disorder were also observed in a rat model of autism. In addition, LOC101927196 targeting FZD3 played a vital role in a rat model of autism through the Wnt signaling pathway. Furthermore, we further demonstrated that over-expressed LOC101927196 blocked neuron cell proliferation and reduced oxidative stress levels, while promoting apoptosis by suppressing the activation of the Wnt signaling pathway. Our findings illustrate that up-regulated LOC101927196 attenuated oxidative stress disorder in a rat model of autism through suppressing the activation of Wnt signaling pathway by targeting FZD3.  相似文献   

13.
Sex differences have been reported in autistic traits and systemizing (male advantage), and empathizing (female advantage) among typically developing individuals. In individuals with autism, these cognitive-behavioural profiles correspond to predictions from the “extreme male brain” (EMB) theory of autism (extreme scores on autistic traits and systemizing, below average on empathizing). Sex differences within autism, however, have been under-investigated. Here we show in 811 adults (454 females) with autism and 3,906 age-matched typical control adults (2,562 females) who completed the Empathy Quotient (EQ), the Systemizing Quotient-Revised (SQ-R), and the Autism Spectrum Quotient (AQ), that typical females on average scored higher on the EQ, typical males scored higher on the SQ-R and AQ, and both males and females with autism showed a shift toward the extreme of the “male profile” on these measures and in the distribution of “brain types” (the discrepancy between standardized EQ and SQ-R scores). Further, normative sex differences are attenuated but not abolished in adults with autism. The findings provide strong support for the EMB theory of autism, and highlight differences between males and females with autism.  相似文献   

14.
Sensorimotor research is currently challenging the dominant understanding of autism as a deficit in the cognitive ability to ‘mindread’. This marks an emerging shift in autism research from a focus on the structure and processes of the mind to a focus on autistic behavior as grounded in the body. Contemporary researchers in sensorimotor differences in autism call for a reconciliation between the scientific understanding of autism and the first-person experience of autistic individuals. I argue that fulfilling this ambition requires a phenomenological understanding of the body as it presents itself in ordinary experience, namely as the subject of experience rather than a physical object. On this basis, I investigate how the phenomenology of Maurice Merleau-Ponty can be employed as a frame of understanding for bodily experience in autism. Through a phenomenological analysis of Tito Mukhopadhyay’s autobiographical work, How can I talk if my lips don’t move (2009), I illustrate the relevance and potential of phenomenological philosophy in autism research, arguing that this approach enables a deeper understanding of bodily and subjective experiences related to autism.  相似文献   

15.
We describe a new hypothesis for the development of autism, that it is driven by imbalances in brain development involving enhanced effects of paternally expressed imprinted genes, deficits of effects from maternally expressed genes, or both. This hypothesis is supported by: (1) the strong genomic-imprinting component to the genetic and developmental mechanisms of autism, Angelman syndrome, Rett syndrome and Turner syndrome; (2) the core behavioural features of autism, such as self-focused behaviour, altered social interactions and language, and enhanced spatial and mechanistic cognition and abilities, and (3) the degree to which relevant brain functions and structures are altered in autism and related disorders. The imprinted brain theory of autism has important implications for understanding the genetic, epigenetic, neurological and cognitive bases of autism, as ultimately due to imbalances in the outcomes of intragenomic conflict between effects of maternally vs. paternally expressed genes.  相似文献   

16.
Although potentially harmful effects of heavy metals are well known, limited numbers of studies exist regarding their relationship with autism. The aim of this study was to investigate urine levels of some heavy metals such as of chromium (Cr), cadmium (Cd), and lead (Pb) in children with autism and healthy subjects. Urine levels of Cr, Cd, and Pb were measured by atomic absorption spectrometry in 30 children with autism and compared with 20 healthy controls. Urine Cd and Pb levels were found as significantly decreased in children with autism compared to healthy subjects (p?<?0.05). On the other hand, urine Cr levels were significantly higher in children with autism than healthy subjects (p?<?0.05). This study suggested that autism may be associated with significant decrease in excretion rate of Cd and Pb and a significant increase excretion rate in the levels of Cr in the urine. These results have indicated that further studies are warranted for investigation of possible roles of heavy metals in autism.  相似文献   

17.
The Autism Diagnostic Interview-Revised (ADI-R) is one of the most commonly used instruments for assisting in the behavioral diagnosis of autism. The exam consists of 93 questions that must be answered by a care provider within a focused session that often spans 2.5 hours. We used machine learning techniques to study the complete sets of answers to the ADI-R available at the Autism Genetic Research Exchange (AGRE) for 891 individuals diagnosed with autism and 75 individuals who did not meet the criteria for an autism diagnosis. Our analysis showed that 7 of the 93 items contained in the ADI-R were sufficient to classify autism with 99.9% statistical accuracy. We further tested the accuracy of this 7-question classifier against complete sets of answers from two independent sources, a collection of 1654 individuals with autism from the Simons Foundation and a collection of 322 individuals with autism from the Boston Autism Consortium. In both cases, our classifier performed with nearly 100% statistical accuracy, properly categorizing all but one of the individuals from these two resources who previously had been diagnosed with autism through the standard ADI-R. Our ability to measure specificity was limited by the small numbers of non-spectrum cases in the research data used, however, both real and simulated data demonstrated a range in specificity from 99% to 93.8%. With incidence rates rising, the capacity to diagnose autism quickly and effectively requires careful design of behavioral assessment methods. Ours is an initial attempt to retrospectively analyze large data repositories to derive an accurate, but significantly abbreviated approach that may be used for rapid detection and clinical prioritization of individuals likely to have an autism spectrum disorder. Such a tool could assist in streamlining the clinical diagnostic process overall, leading to faster screening and earlier treatment of individuals with autism.  相似文献   

18.
19.
孤独症是一种病因不明的广泛性发育障碍疾病,它是孤独症谱系障碍的代表疾病,发病年龄早,大多在3岁以内起病,以社会交往障碍,言语交流障碍,动作行为的重复刻板和兴趣范围狭窄为三大临床核心症状。孤独症发病率呈逐年增高趋势,我国患者量已超过一百万。但是迄今为止仍没有特异的方法与手段对孤独症进行彻底有效地诊治,为社会和家庭带来了沉重的负担,因此,其发病机制是迫切需要研究的难题。目前国际上公认为遗传因素在孤独症的发病中起着重要作用,但对于致病基因的确定仍不明确。突触后致密物(PSD)在中枢神经系统神经递质和信息的传递过程中起重要作用,影响学习记忆及认知相关功能,而孤独症患者存在认知相关功能损伤的表现,二者可能存在一定的联系。本文对PSD基因功能以及与孤独症关系的研究加以综述,希望有助于孤独症的病因学研究,以期早日改善该病的诊疗及预防。  相似文献   

20.
There is substantial heterogeneity in the aetiology and clinical presentation of autism. So how do we account for homogeneity in the syndrome? The answer to this question will be critical for any attempt to trace the links between brain pathology and the psychological disabilities that characterize autism. One possibility is that the source of homogeneity in autism is not to be found ''in the child'', but rather in dysfunction of the system constituted by child-in-relation-to-other. We have been exploring this hypothesis through the study of congenitally blind children, among whom features of autism, and the syndrome of autism itself, are strikingly common. To justify such an approach, one needs to establish that the clinical features in blind children have qualities that are indeed ''autistic-like''. We conducted systematic observations of the social interactions of two matched groups of congenitally blind children who do not have autism, rating their social engagement, emotional tone, play and language during three sessions of free play in the school playground. The qualities of social impairment in the more disabled children were similar to those in sighted children with autism. Additional evidence came from independent ratings of the children in a different play setting: on the childhood autism rating scale (CARS), the socially impaired children had ''autistic-like'' abnormalities in both social and non-social domains. If we can determine the way in which congenital blindness predisposes to features of autism, we shall be in a better position to trace the developmental pathways that lead to the syndrome in sighted children.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号