首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The role of the herpes simplex virus tegument protein VP22 is not yet known. Here we describe the characterization of a virus in which the entire VP22 open reading frame has been deleted. We show that VP22 is not essential for virus growth but that virus lacking VP22 (Delta22) displays a cell-specific replication defect in epithelial MDBK cells. Virus particles assembled in the absence of VP22 show few obvious differences to wild-type (WT) particles, except for a moderate reduction in glycoproteins gD and gB. In addition, the Delta22 virus exhibits a general delay in the initiation of virus protein synthesis, but this is not due to a glycoprotein-related defect in virus entry. Intriguingly, however, the absence of VP22 has an obvious effect on the intracellular level of the immediate-early (IE) protein ICP0. Moreover, following translocation from the nucleus to the cytoplasm, ICP0 is unable to localize to the characteristic cytoplasmic sites observed in a WT infection. We demonstrate that, in WT-infected cells, VP22 and ICP0 are concentrated in the same cytoplasmic sites. Furthermore, we show that, while ICP0 and ICP4 are components of WT extracellular virions, the altered localization of ICP0 in the cytoplasm of Delta22-infected cells correlates with an absence of both ICP0 and ICP4 from Delta22 virions. Hence, while a role has not yet been defined for virion IE proteins in virus infection, our results suggest that their incorporation is a specific event requiring the tegument protein VP22. This report provides the first direct evidence that VP22 influences virus assembly.  相似文献   

2.
3.
4.
In cell culture experiments, phosphorylation appears to be a critical regulator of the herpes simplex virus 1 (HSV-1) immediate-early (IE) protein, ICP0, which is an E3 ubiquitin ligase that transactivates viral gene expression. Three major regions of phosphorylation in ICP0 (amino acids 224 to 232, 365 to 371, and 508 to 518) have been identified, and mutant viruses that block phosphorylation sites within each region (termed Phos 1, 2, and 3, respectively) have been constructed. Previous studies indicated that replication of Phos 1 is significantly reduced compared to that of wild-type virus in cell culture (C. Boutell, et al., J. Virol. 82:10647-10656, 2008). To determine the effects these phosphorylation site mutations have on the viral life cycle in vivo, mice were ocularly infected with wild-type HSV-1, the Phos mutants, or their marker rescue counterparts. Subsequently, viral replication, establishment of latency, and viral explant-induced reactivation of these viruses were examined. Relative to wild-type virus, Phos 1 eye titers were reduced as much as 7- and 18-fold on days 1 and 5 postinfection, respectively. Phos 2 eye titers showed a decrease of 6-fold on day 1 postinfection. Titers of Phos 1 and 2 trigeminal ganglia were reduced as much as 16- and 20-fold, respectively, on day 5 postinfection. Additionally, the reactivation efficiencies of Phos 1 and 2 were impaired relative to wild-type HSV-1, although both viruses established wild-type levels of latency in vivo. The acute replication, latency, and reactivation phenotypes of Phos 3 were similar to those of wild-type HSV-1. We conclude from these studies that phosphorylation is likely a key modulator of ICP0's biological activities in a mouse ocular model of HSV-1 infection.  相似文献   

5.
We have investigated the possibility that immediate-early (IE) protein ICP4 could be a part of herpes simplex virus type 1 (HSV-1) virion particle. Immunodetection with a monoclonal antibody against ICP4 reveals that a component of the virion, migrating at 165 kd, shares a common epitope with this immediate-early protein. Immunolocalization studies on purified virions indicate that the antigen can be detected only in virions without membranes, and is located outside the capsid, most probably in the tegument. Ultrastructural localizations on HSV-1 infected BHK cells extracted with a nonionic detergent confirm that the protein immunoreacting with anti-ICP4 is present in virions.  相似文献   

6.
7.
8.
Assembly of the herpesvirus tegument is poorly understood but is believed to involve interactions between outer tegument proteins and the cytoplasmic domains of envelope glycoproteins. Here, we present the detailed characterization of a multicomponent glycoprotein-tegument complex found in herpes simplex virus 1 (HSV-1)-infected cells. We demonstrate that the tegument protein VP22 bridges a complex between glycoprotein E (gE) and glycoprotein M (gM). Glycoprotein I (gI), the known binding partner of gE, is also recruited into this gE-VP22-gM complex but is not required for its formation. Exclusion of the glycoproteins gB and gD and VP22''s major binding partner VP16 demonstrates that recruitment of virion components into this complex is highly selective. The immediate-early protein ICP0, which requires VP22 for packaging into the virion, is also assembled into this gE-VP22-gM-gI complex in a VP22-dependent fashion. Although subcomplexes containing VP22 and ICP0 can be formed when either gE or gM are absent, optimal complex formation requires both glycoproteins. Furthermore, and in line with complex formation, neither of these glycoproteins is individually required for VP22 or ICP0 packaging into the virion, but deletion of gE and gM greatly reduces assembly of both VP22 and ICP0. Double deletion of gE and gM also results in small plaque size, reduced virus yield, and defective secondary envelopment, similar to the phenotype previously shown for pseudorabies virus. Hence, we suggest that optimal gE-VP22-gM-gI-ICP0 complex formation correlates with efficient virus morphogenesis and spread. These data give novel insights into the poorly understood process of tegument acquisition.  相似文献   

9.
Recent studies have shown that ICP4, one of the major immediate-early proteins of herpes simplex virus type 1 is present within the tegument region of the virion (F. Yao and R. J. Courtney, J. Virol. 63:3338-3344, 1989). With monoclonal antibodies to two additional immediate-early proteins, ICP0 and ICP27, and Western blot (immunoblot) analysis, ICP0, but not ICP27, was also found to be associated with purified virus particles. In an effort to localize the ICP0 within the virion, purified virions were treated with trypsin in the presence and absence of detergent. The data suggest that ICP0 is located within the tegument region of the virion and is not localized in the envelope or within the nucleocapsid. The number of molecules of ICP0 per virion was estimated to be approximately 150.  相似文献   

10.
VP22, encoded by the UL49 gene, is one of the most abundant proteins of the herpes simplex virus 1 (HSV-1) tegument. In the present study we show VP22 is required for optimal protein synthesis at late times in infection. Specifically, in the absence of VP22, viral proteins accumulated to wild-type levels until ~6 h postinfection. At that time, ongoing synthesis of most viral proteins dramatically decreased in the absence of VP22, whereas protein stability was not affected. Of the individual proteins we assayed, VP22 was required for optimal synthesis of the late viral proteins gE and gD and the immediate-early protein ICP0 but did not have discernible effects on accumulation of the immediate-early proteins ICP4 or ICP27. In addition, we found VP22 is required for the accumulation of a subset of mRNAs to wild-type levels at early, but not late, times in infection. Specifically, the presence of VP22 enhanced the accumulation of gE and gD mRNAs until ~9 h postinfection, but it had no discernible effect at later times in infection. Also, VP22 did not significantly affect ICP0 mRNA at any time in infection. Thus, the protein synthesis and mRNA phenotypes observed with the UL49-null virus are separable with regard to both timing during infection and the genes affected and suggest separate roles for VP22 in enhancing the accumulation of viral proteins and mRNAs. Finally, we show that VP22's effects on protein synthesis and mRNA accumulation occur independently of mutations in genes encoding the VP22-interacting partners VP16 and vhs.  相似文献   

11.
Herpes simplex virus type 1 ICP22-/U(S)1.5- mutants initiate viral gene expression in all cells; however, in most cell types, the replication process stalls due to an inability to express gamma2 late proteins. Although the function of ICP22/U(S)1.5 has not been established, it has been suggested that these proteins activate, induce, or repress the activity of cellular proteins during infection. In this study, we hypothesized that cell cycle-associated proteins are targets of ICP22/U(S)1.5. For this purpose, we first isolated and characterized an ICP22-/U(S)1.5- mutant virus, 22/n199. Like other ICP22-/U(S)1.5- mutants, 22/n199 replicates in a cell-type-specific manner and fails to induce efficient gamma2 late gene expression in restrictive cells. Although synchronization of restrictive human embryonic lung cells in each phase of the cell cycle did not overcome the growth restrictions of 22/n199, synchronization of permissive Vero cells in S phase rendered them less able to support 22/n199 plaque formation and replication. Consistent with this finding, expression of cellular S-phase cyclins was altered in an ICP22/U(S)1.5-dependent manner specifically when S-phase Vero cells were infected. Collectively, these observations support the notion that ICP22/U(S)1.5 deregulates the cell cycle upon infection of S-phase permissive cells by altering expression of key cell cycle regulatory proteins either directly or indirectly.  相似文献   

12.
Using Vero cells transformed with the wild-type gene for ICP4 as the permissive host cell, we isolated herpes simplex virus type 1 (HSV-1) mutants containing deletions in both copies of the ICP4 gene. The mutants, d120 and d202, contained deletions of 4.1 and 0.5 kilobases, respectively, in each copy of ICP4. ICP4 mRNA synthesized in d202-infected Vero cells was 0.5 kilobases smaller than that synthesized in cells infected with the wild-type virus. No ICP4 mRNA was detected in d120-infected Vero cells. d120 and d202 specified polypeptides that reacted with ICP4 antiserum and were smaller than the wild-type ICP4 polypeptide by 130 and 30 kilodaltons, respectively. The only other HSV-1 gene products detectable on infection of Vero cells with d120 and d202 were ICP6 (of the early kinetic class of HSV-1 polypeptides), ICP0 (immediate early), ICP22 (immediate early), and ICP27 (immediate early). Immediate-early polypeptides ICP0 and ICP27 were expressed to a higher level in Vero cells infected with an ICP4 temperature-sensitive (ts) mutant (tsB32) at 39 degrees C, indicating immediate-early stimulatory activity associated with the ts ICP4 polypeptide. In addition, the patterns of complementation of d120, d202, and tsB32 in ICP4-transformed cells also demonstrated inhibitory activity associated with the ts form of the ICP4 polypeptide.  相似文献   

13.
Relative to wild-type herpes simplex virus type 1 (HSV-1), ICP0-null mutant viruses reactivate inefficiently from explanted, latently infected mouse trigeminal ganglia (TG), indicating that ICP0 is not essential for reactivation but plays a central role in enhancing the efficiency of reactivation. The validity of these findings has been questioned, however, because the replication of ICP0-null mutants is impaired in animal models during the establishment of latency, such that fewer mutant genomes than wild-type genomes are present in latently infected mouse TG. Therefore, the reduced number of mutant viral genomes available to reactivate, rather than mutations in the ICP0 gene per se, may be responsible for the reduced reactivation efficiency of ICP0-null mutants. We have recently demonstrated that optimization of the size of the ICP0 mutant virus inoculum and transient immunosuppression of mutant-infected mice with cyclophosphamide can be used to establish wild-type levels of ICP0-null mutant genomes in latently infected TG (W. P. Halford and P. A. Schaffer, J. Virol. 74:5957-5967, 2000). Using this procedure to equalize mutant and wild-type genome numbers, the goal of the present study was to determine if, relative to wild-type virus, the absence of ICP0 function in two ICP0-null mutants, n212 and 7134, affects reactivation efficiency from (i) explants of latently infected TG and (ii) primary cultures of latently infected TG cells. Although equivalent numbers of viral genomes were present in TG of mice latently infected with either wild-type or mutant viruses, reactivation of n212 and 7134 from heat-stressed TG explants was inefficient (31 and 37% reactivation, respectively) relative to reactivation of wild-type virus (KOS) (95%). Similarly, n212 and 7134 reactivated inefficiently from primary cultures of dissociated TG cells plated directly after removal from the mouse (7 and 4% reactivation, respectively), relative to KOS (60% reactivation). The efficiency and kinetics of reactivation of KOS, n212, and 7134 from cultured TG cells (treated with acyclovir to facilitate the establishment of latency) in response to heat stress or superinfection with a nonreplicating HSV-1 ICP4(-) mutant, n12, were compared. Whereas heat stress induced reactivation of KOS from 69% of latently infected TG cell cultures, reactivation of n212 and 7134 was detected in only 1 and 7% of cultures, respectively. In contrast, superinfection with the ICP4(-) virus, which expresses high levels of ICP0, resulted in the production of infectious virus in nearly 100% of cultures latently infected with KOS, n212, or 7134 within 72 h. Thus, although latent mutant viral genome loads were equivalent to that of wild-type virus, in the absence of ICP0, n212 and 7134 reactivated inefficiently from latently infected TG cells during culture establishment and following heat stress. Collectively, these findings demonstrate that ICP0 is required to induce efficient reactivation of HSV-1 from neuronal latency.  相似文献   

14.
The wild-type UL31, UL34, and US3 proteins localized on nuclear membranes and perinuclear virions; the US3 protein was also on cytoplasmic membranes and extranuclear virions. The UL31 and UL34 proteins were not detected in extracellular virions. US3 deletion caused (i) virion accumulation in nuclear membrane invaginations, (ii) delayed virus production onset, and (iii) reduced peak virus titers. These data support the herpes simplex virus type 1 deenvelopment-reenvelopment model of virion egress and suggest that the US3 protein plays an important, but nonessential, role in the egress pathway.  相似文献   

15.
16.
17.
18.
The large subunit of herpes simplex virus (HSV) ribonucleotide reductase (RR), RR1, contains a unique amino-terminal domain which has serine/threonine protein kinase (PK) activity. To examine the role of the PK activity in virus replication, we studied an HSV type 2 (HSV-2) mutant with a deletion in the RR1 PK domain (ICP10ΔPK). ICP10ΔPK expressed a 95-kDa RR1 protein (p95) which was PK negative but retained the ability to complex with the small RR subunit, RR2. Its RR activity was similar to that of HSV-2. In dividing cells, onset of virus growth was delayed, with replication initiating at 10 to 15 h postinfection, depending on the multiplicity of infection. In addition to the delayed growth onset, virus replication was significantly impaired (1,000-fold lower titers) in nondividing cells, and plaque-forming ability was severely compromised. The RR1 protein expressed by a revertant virus [HSV-2(R)] was structurally and functionally similar to the wild-type protein, and the virus had wild-type growth and plaque-forming properties. The growth of the ICP10ΔPK virus and its plaque-forming potential were restored to wild-type levels in cells that constitutively express ICP10. Immediate-early (IE) genes for ICP4, ICP27, and ICP22 were not expressed in Vero cells infected with ICP10ΔPK early in infection or in the presence of cycloheximide, and the levels of ICP0 and p95 were significantly (three- to sevenfold) lower than those in HSV-2- or HSV-2(R)-infected cells. IE gene expression was similar to that of the wild-type virus in cells that constitutively express ICP10. The data indicate that ICP10 PK is required for early expression of the viral regulatory IE genes and, consequently, for timely initiation of the protein cascade and HSV-2 growth in cultured cells.  相似文献   

19.
Feng X  Schröer J  Yu D  Shenk T 《Journal of virology》2006,80(17):8371-8378
We have characterized the function of the human cytomegalovirus US24 gene, a US22 gene family member. Two US24-deficient mutants (BADinUS24 and BADsubUS24) exhibited a 20- to 30-fold growth defect, compared to their wild-type parent (BADwt), after infection at a relatively low (0.01 PFU/cell) or high (1 PFU/cell) input multiplicity. Representative virus-encoded proteins and viral DNA accumulated with normal kinetics to wild-type levels after infection with mutant virus when cells received equal numbers of mutant and wild-type infectious units. Further, the proteins were properly localized and no ultrastructural differences were found by electron microscopy in mutant-virus-infected cells compared to wild-type-virus-infected cells. However, virions produced by US24-deficient mutants had a 10-fold-higher genome-to-PFU ratio than wild-type virus. When infections were performed using equal numbers of input virus particles, the expression of immediate-early, early, and late viral proteins was substantially delayed and decreased in the absence of US24 protein. This delay is not due to inefficient virus entry, since two tegument proteins and viral DNA moved to the nucleus equally well in mutant- and wild-type-virus-infected cells. In summary, US24 is a virion protein and virions produced by US24-deficient viruses exhibit a block to the human cytomegalovirus replication cycle after viral DNA reaches the nucleus and before immediate-early mRNAs are transcribed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号