首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The current study investigated the impact of reflective mulch on yield of strawberry plants and incidence of damage by tarnished plant bugs, Lygus lineolaris (Palisot de Beauvois), for three strawberry cultivars: 'Honeoye', 'Earliglow', and two sibling Dayneutrals ('Tribute' and 'Tristar', herein considered as one cultivar). Of all cultivars tested, Honeoye was the most productive and least susceptible to tarnished plant bug. For Earliglow and Honeoye, reflective mulch enhanced productivity of strawberry plants and suppressed density of nymphs per flower cluster and proportion of damaged fruits, but did not significantly impact numbers of nymphs or damaged fruits per hectare, Results with Dayneutrals were not consistently significant. Both in the presence or absence of reflective mulch, proportion of damaged fruits increased with increasing density of nymphs per flower cluster and with decreasing number of fruits harvested per row section, suggesting that planting productive strawberry cultivars or maintaining cultural practices that promote high yield may provide an effective line of defense against tarnished plant bug. These results also suggest that reflective mulch may suppress incidence of damage by tarnished plant bug both directly, by reducing number of nymphs per flower cluster, and indirectly, by enhancing productivity of strawberry plants. Economic analyses evaluating costs and benefits of using reflective mulch, as well as studies investigating mechanisms that underlie the impact of reflective mulch on yield and incidence of damage by tarnished plant bug, are still needed before reflective mulch can be implemented as a management strategy in commercial strawberry fields.  相似文献   

2.
The current study evaluated whether flowering phenology and yield attributes of different strawberry cultivars affect the abundance and feeding impact of tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), as well as behavioral decisions made by feeding nymphs and ovipositing adults. The distribution of emerged nymphs in cage experiments involving nine different cultivars of June-bearing strawberry cultivars suggests that females lay more eggs on plants with numerous flower receptacles, while cultivar per se did not influence their oviposition behavior. A large number of nymphs emerged from receptacles of strawberry plants, while the distribution of emerged nymphs among receptacles, petioles, leaves, and stems varied for different cultivars. These results suggest that the relative intensity of damage caused by ovipositing females may vary for different cultivars. Foraging nymphs did not exhibit a preference for any strawberry cultivar per se, although the abundance of nymphs increased with the weight of receptacles, especially for late instars. Evaluating the density and feeding impact of L. lineolaris for different cultivars under field conditions revealed that some host plant attributes affect the abundance of plant bugs, such as early flowering season and high productivity. Decreasing number of emerged nymphs per flower per plant with increasing density of receptacles per plant suggests that females lay relatively more eggs per receptacle on plants with few receptacles; this pattern of oviposition may explain, in part, why patches with low density of plants typically have high incidence of damage. Planting a high yielding early season cultivar such as 'Cavendish' may contribute to reduce the incidence of damage by L. lineolaris.  相似文献   

3.
Abstract 1. Migration into local populations may increase the likelihood of persistence but emigration may decrease the persistence of small and isolated populations. The dispersal behaviour of a day-flying moth Zygaena filipendulae was examined to determine whether emigration is correlated positively or negatively with population size and host plant density.
2. A mark–release–recapture study showed that most moths moved small distances (< 40 m on average) and only 6% of movements were > 100 m.
3. Twenty-five individuals moved between populations, a measured exchange rate of 8%. Moths were more likely to move between patches that were close together and they moved to relatively large patches.
4. The fraction of residents increased with increasing population size in the patch and increasing host plant cover. Relatively high proportions of individuals left small patches with small moth populations.
5. Moths released in grassland lacking Lotus corniculatus (the host plant) tended to leave the area and biased their movement towards host plant areas, whereas those released within an area containing L. corniculatus tended to stay in that area.
6. Biased movement away from small populations and areas of low host plant density (normally with low population density) was found. This migration-mediated Allee effect is likely to decrease patch occupancy in metapopulations, the opposite of the rescue effect. The effects on metapopulation persistence are not known.  相似文献   

4.
Abstract.  1. Plants respond to herbivore damage by inducing defences that can affect the abundance of herbivores and predators. These tritrophic interactions may be influenced by heterogeneity in plant neighbourhood.
2. In the present study, the effects of induced responses on the abundance of herbivores (flea beetles and aphids), omnivores (pirate bugs and thrips), and predators (lady beetles and spiders) on individual plants and their neighbours between and within patches composed of three tomato plants was investigated.
3. Herbivore damage was manipulated to create homogeneous patches where either all or none of the plants had defences induced by herbivore damage, and heterogeneous patches where only one of the plants was induced.
4. Arthropod abundance on plants at different scales was compared by testing between patch effects (patch level), for neighbourhood effects at the plant phenotype level (neighbourhood level), and between near and far plants (within patch position).
5. At the patch level , plants in homogeneously induced patches contained fewer flea beetles and pirate bugs, but more lady beetles, compared with homogeneously non-induced patches. There was no effect of patch type on the abundance of aphids, thrips, and spiders on plants.
6. At the neighbourhood level , induced plants in heterogeneous patches contained more flea beetles and pirate bugs compared with induced plants in homogeneous patches, indicating that the abundance of some herbivores and omnivores on induced plants varied depending on the phenotype of the other plants within the patch. Within patch position, there was no evidence that the abundance of herbivores or predators on non-induced plants was affected by proximity to an induced plant.
7. Therefore, variation in plant neighbourhood generated by induced plant responses affected the abundance of three arthropods from three feeding guilds.  相似文献   

5.
Habitat fragmentation poses a major threat to the viability of plant populations. However, the intensity of fragmentation effects may vary among years. We studied two possible effects of habitat fragmentation (patch size and isolation) on the reproduction and proportion of damaged fruits in 24 patches of the self-compatible shrub Colutea hispanica for three consecutive years with different climate conditions. We also studied the effect of fragmentation on the incidence of two main pre-dispersal seed predators, the butterflies Iolana iolas and Lampides boeticus. High between-year variability was found in number of viable seeds per fruit, number of fruits per plant, total number of viable seeds per plant and proportion of damaged fruits. In 2003, small, isolated patches had a higher fruit set and number of fruits per plant. The proportion of damaged fruits was significantly lower in isolated populations in 2003, while it was very high in all patches in 2004 and 2005. High between-year variability was also found in the proportion of fruits per plant with I. iolas eggs. In 2003 isolated patches had a lower proportion of fruits with I. iolas eggs, but no significant effect of patch size and isolation was found in 2004 or 2005. The proportion of fruits with L. boeticus eggs was similar in the three years of study, although it was slightly higher in large, non-isolated patches in 2003. Thus, the effects of fragmentation on plant reproduction cannot be generalized from one single-year survey. In contrast to the generally accepted idea that fragmentation reduces plant reproduction, plant fitness may increase in isolated patches in years with high fruit production and low seed predation.  相似文献   

6.
Summary The effects of host plant patch size on the abundances of two specialist herbivores (the chrysomelid beetle, Acalymma innubum and the pentatomid bug, Piezosternum subulatum) were investigated in a natural forest community in the Virgin Islands. Abundances were compared early and late in the season in different sized patches of the cucurbit host plant (Cayaponia americana) growing in open habitat (with no surrounding plant community) and forest habitat (with diverse surrounding plant community). For both herbivore species, adult abundances per patch were positively correlated with patch leaf area, but there was a significant patch size effect (i.e., correlation between herbivore density per unit plant and patch leaf area) only for beetles in the forest habitat. Both herbivore species were significantly affected by surrounding plant diversity, but in opposite ways: beetles were more abundant in open patches whereas bugs were more abundant in forest patches. Relationships between abundance and patch size in open and forest patches changed through the season for both herbivore species. These changing abundance patterns are discussed with respect to (1) increases in the diversity of the plant community surrounding host plant patches, and (2) differences in herbivore movement patterns.  相似文献   

7.
Abstract.  1. Herbivory can induce resistance in a plant and the induced phenotype may be disfavoured by subsequent herbivores. Yet, as the distance between plants in a population increases, limited mobility may make a herbivore more likely to feed and oviposit on host plants in its immediate surroundings.
2. The present study tested whether a herbivore's preference and distribution across plants with different induced phenotypes was influenced by the spatial distribution of plants. A fragmented population of Solanum dulcamara plants was created. This consisted of discrete, spatially separated patches with different histories of damage, either herbivory from adult flea beetles ( Psylliodes affinis ), tortoise beetles ( Plagiometriona clavata ), or mechanical damage. Each patch was separated by 7 m and consisted of 12 plants that were spaced 30 cm apart. Then a fixed number of adult tortoise beetles were introduced to each patch, and movement and oviposition within and between spatially separate homogeneous patches (receiving one type of damage) were compared with movement and oviposition within heterogeneous patches (containing all three types of damage) over the growing season.
3. Flea beetle and tortoise beetle herbivory consistently induced different phytochemical responses in S. dulcamara (polyphenol oxidase and peroxidase), and adult tortoise beetles avoided oviposition on the flea beetle induced plants within heterogeneous patches. However, between homogeneous patches, plant phenotype did not influence oviposition. Colonisation by naturally occurring flea beetle adults followed a similar pattern.
4. These results suggest that the heterogeneity of plant phenotypes can influence herbivore choice and distribution at small but not large spatial scales.  相似文献   

8.
Experimental data on the relationship between plant patch size and population density of herbivores within fields often deviates from predictions of the theory of island biogeography and the resource concentration hypothesis. Here we argue that basic features of foraging behaviour can explain different responses of specialist herbivores to habitat heterogeneity. In a combination of field and simulation studies, we applied basic knowledge on the foraging strategies of three specialist herbivores: the cabbage aphid (Brevicoryne brassicae), the cabbage butterfly (Pieris rapae L.) and the diamondback moth (Plutella xylostella L.), to explain differences in their responses to small scale fragmentation of their habitat. In our field study, populations of the three species responded to different sizes of host plant patches (9 plants and 100 plants) in different ways. Densities of winged cabbage aphids were independent of patch size. Egg‐densities of the cabbage butterfly were higher in small than in large patches. Densities of diamondback moth adults were higher in large patches than in small patches. When patches in a background of barley were compared with those in grass, densities of the cabbage aphid and the diamondback moth were reduced, but not cabbage butterfly densities. To explore the role of foraging behaviour of herbivores on their response to patch size, a spatially explicit individual‐based simulation framework was used. The sensory abilities of the insects to detect and respond to contact, olfactory or visual cues were varied. Species with a post‐alighting host recognition behaviour (cabbage aphid) could only use contact cues from host plants encountered after landing. In contrast, species capable with a pre‐alighting recognition behaviour, based on visual (cabbage butterfly) or olfactory (diamondback moth) cues, were able to recognise a preferred host plant whilst in flight. These three searching modalities were studied by varying the in flight detection abilities, the displacement speed and the arrestment response to host plants by individuals. Simulated patch size – density relationships were similar to those observed in the field. The importance of pre‐ and post‐ alighting detection in the responses of herbivores to spatial heterogeneity of the habitat is discussed.  相似文献   

9.
Abstract.  1. Dispersal capabilities of organisms are critical in determining the landscape population structure of species as well as their likelihood of survival in fragmented landscapes. Using mark–recapture techniques on the monophagous weevil Rhyssomatus lineaticollis Say (Curculionidae), within- and between-patch dispersal capabilities, landscape level population structure, and the role of beetle density and host patch characteristics in setting distances, amounts, and timing of dispersal were studied.
2. The data indicate that R. lineaticollis is sedentary, with 50% of recaptured beetles moving < 1 m and the maximum distance moved < 1 km. Within- and between-patch movement of beetles was unrelated to host plant patch characteristics and beetle densities.
3. Despite limited dispersal, R. lineaticollis probably functions as a patchy population in east-central Iowa, U.S.A. because dispersals between patches are common and because all host patches surveyed contained this herbivore, indicating a lack of suitable vacant patches, a prerequisite for metapopulation structure.
4. Between-patch distances are well within the dispersal capabilities of R. lineaticollis , although this may be the result of an increase in the density of patches of its host, Asclepias syriaca , in the landscape over the last 150 years as a result of human disturbance and this species' weedy habit.
5. Metapopulation structure in monophagous prairie herbivores may be most likely in species whose non-weedy host plants form highly predictable resources in space and time, but which are now widely scattered in habitat fragments.  相似文献   

10.
Studies examined hairy chinch bug, Blissus leucopterus hirtus Montandon, damage, population density, and movement in stands of perennial ryegrass, Lolium perenne L., containing various proportions of endophyte infected plants (E+). Our main objective was to determine the utility of mixtures containing E+ for management of chinch bugs. Chinch bug damage and population density decreased linearly as the proportion of E+ increased. This trend held true even when chinch bug populations were extremely high. Chinch bug nymphs emigrated more quickly from stands containing 100% E+ than they did from stands containing 50 or 0% E+, whereas adult chinch bug emigration was relatively unaffected by the proportion of E+. Our results indicate that turfgrass mixtures containing E+ can reduce chinch bug damage and population density.  相似文献   

11.
Source populations of polyphagous pests often occur on host plants other than the economically damaged crop. We evaluated the contribution of patches of a non-native meadow grass, Lolium multiflorum Lam. (Poaceae), and other weeds growing in fallow fields or meadows as source hosts of an important native pest of rice, Stenotus rubrovittatus (Matsumura) (Hemiptera: Miridae), in an agricultural landscape of northern Japan. Periodical censuses of this mirid bug by using the sweeping method, vegetation surveys, and statistical analysis revealed that L. multiflorum was the only plant species that was positively correlated with the density of adult S. rubrovittatus through two generations and thus may be the most stable and important host of the mirid bug early in the season before the colonization of rice paddies. The risk and cost of such an indirect negative effect on a crop plant through facilitation of a native pest by a non-native plant in the agricultural landscape should not be overlooked.  相似文献   

12.
Cronin JT 《Oecologia》2004,139(4):503-514
Few field studies of natural populations have examined the factors influencing local extinctions and colonization of empty habitat patches for a prey species and its predator. In this study, I carried out a census of planthopper (Prokelisia crocea; Hemiptera: Delphacidae) and egg parasitoid (Anagrus columbi; Hymenoptera: Mymaridae) incidence and densities in 147 host-plant patches (Spartina pectinata; Poaceae) over seven planthopper generations in a tall-grass prairie landscape. For both species, the likelihood of going extinct in a patch was related to a number of patch-specific variables: density, temporal variability in density, proportion of hosts parasitized (planthopper only), host-plant density, patch size, patch isolation, and composition of the surrounding matrix. Colonization likelihood was related only to the physical attributes of the patch. There was high patch turnover in this prairie landscape. On average, planthoppers went extinct in 23% of the patches and A. columbi went extinct in 51% of the patches in each generation. For the planthopper, extinction likelihood increased with a decrease in patch size and the proportion of the matrix composed of mudflat. Parasitism of eggs had no effect on the extinction likelihood of local P. crocea populations, suggesting that A. columbi may not play a major role in the patch dynamics of its host. The likelihood of extinction for A. columbi was dependent on factors that spanned three trophic levels. An increase in plant density, decrease in host density and decrease in parasitoid density all increased the likelihood of A. columbi extinction within a patch. The dependency on multiple trophic levels may explain the higher extinction risk for the parasitoid than its host. A. columbi extinction was also affected by the matrix habitat surrounding the patch—the effect was the opposite of that for P. crocea. Finally, vacant patches were colonized at rates of 53% and 34% per generation for the planthopper and parasitoid, respectively. For both species, colonization probabilities decreased with an increase in patch isolation. High host densities in a patch also favored high rates of colonization by A. columbi. I discuss how anthropogenic changes to the prairie landscape can affect the metapopulation dynamics and persistence time of this host-parasitoid interaction.  相似文献   

13.
Stephen F. Matter 《Oecologia》1997,110(4):533-538
The relationship between population density and the size of host plant patches was investigated for the red milkweed beetle Tetraopestetraophthalmus inhabiting unmanipulated patches of Asclepias syriaca. The resource concentration hypothesis proposes that density-area patterns, specifically that of increasing herbivore density with patch size, are primarily a function of movement between host plant patches. This research investigated the degree to which movement accounted for density-area patterns. Poisson regression analysis of beetle abundance versus milkweed patch size revealed that beetle density tended to increase with patch size. The pattern of density and patch size resulted from local reproduction and residence time. The density of emerging beetles tended to increase with patch size while emigration rates were unrelated to patch size. Immigration rates were constant with patch size for male beetles, and decreased with patch size for female beetles. Net flux of beetles (immigration – emigration) did not vary with patch size for male beetles and decreased with patch size for female beetles. Comparisons are made between this system and previously studied systems where movement plays a significant role in forming density area patterns. Additionally, several hypotheses are presented which may account for greater in situ recruitment and residence time in large patches. Received: 23 February 1996 / Accepted: 8 January 1997  相似文献   

14.
Abstract.  1. Dispersal plays an integral role in determining spatial population structure and, consequently, the long-term survival of many species. Theoretical studies indicate that dispersal increases with population density and decreasing habitat stability. In the case of monophagous insect herbivores, the stability of host-plant populations may influence their spatial population structure.
2. The tallgrass prairie in Iowa, U.S.A. is highly fragmented and most prairie insects face a landscape with fewer habitat patches and smaller host-plant populations than 150 years ago, potentially making dispersal between patches difficult. Some herbivores, however, use native plant species with weedy characteristics that have increased in abundance because of disturbances.
3. Mark–recapture data and presence–absence surveys were used to examine dispersal and spatial population structure of two monophagous beetles with host plants that exhibit different population stability and have responded differently to fragmentation of tallgrass prairie.
4. Chrysochus auratus Fabricius exhibits a patchy population structure and has relatively large dispersal distances and frequencies. Its host plant is variable locally in time and space, but is more abundant than 150 years ago. The other species, Anomoea laticlavia Forster, exhibits a metapopulation or non-equilibrium population structure and has relatively small dispersal distances and frequencies. Its host-plant populations are stable in time and space.
5. The results indicate that dispersal ability of monophagous beetles reflects the life-history dynamics of their host plants, but the spatial population structure exhibited today is strongly influenced by how the host plants have responded to the fragmentation process over both time and space.  相似文献   

15.
Fragmentation, deterioration, and loss of habitat patches threaten the survival of many insect species. Depending on their trophic level, species may be differently affected by these factors. However, studies investigating more than one trophic level on a landscape scale are still rare. In the present study we analyzed the effects of habitat size, isolation, and quality for the occurrence and population density of the endangered leaf beetle Cassida canaliculata Laich. (Coleoptera: Chrysomelidae) and its egg parasitoid, the hymenopteran wasp Foersterella reptans Nees (Hymenoptera: Tetracampidae). C. canaliculata is strictly monophagous on meadow sage (Salvia pratensis), while F. reptans can also parasitize other hosts. Both size and isolation of habitat patches strongly determined the occurrence of the beetle. However, population density increased to a much greater extent with increasing host plant density ( = habitat quality) than with habitat size. The occurrence probability of the egg parasitoid increased with increasing population density of C. canaliculata. In conclusion, although maintaining large, well-connected patches with high host plant density is surely the major conservation goal for the specialized herbivore C. canaliculata, also small patches with high host plant densities can support viable populations and should thus be conserved. The less specialized parasitoid F. reptans is more likely to be found on patches with high beetle density, while patch size and isolation seem to be less important.  相似文献   

16.
Abstract. 1. Corythucha marmorata (Hemiptera: Tingidae) was more abundant in clusters of small experimental patches of its host plant, goldenrod (Solidago altissima) , than in large patches covering the same area.
2. Adults and egg masses were more abundant on stems on the edges of the patches than on those in the interior.
3. Female Cmarmorata caged on edge plants laid more eggs than females caged on interior plants, and eggs on exposed plants developed faster than those in the middle of a pacth.
4. A preference for edges results in negative 'response' to patch size because large patches invariably have a lower proportion of edge than small patches.  相似文献   

17.
The phenology of Lygus rugulipennis, the European tarnished plant bug, was studied in fields of strawberries producing late-season (July to September) crops. Adults invaded fields in small numbers, mainly in July. Large numbers of nymphs were found in late July and early August; these matured into adults from late August. Adults formed the overwintering population; some remained in strawberry fields but left in spring to feed on other host plants. All the insecticides tested, i.e. malathion, chlorpyrifos, heptenophos, cypermethrin, bifenthrin and trichlorfon, gave good short-term control of nymphs.  相似文献   

18.
Abstract.  1. For animal species that forage on patchily distributed resources, patch time allocation is of prime importance to their reproductive success. According to Charnov's marginal value theorem (MVT), the rate of patch encounter should influence negatively the patch residence time: as the rate of patch encounter decreases, the patch residence time increases. Moreover, the MVT predicts that animals should stay longer in high quality patches.
2. Using the aphid parasitoid Aphidius rhopalosiphi (Hymenoptera: Aphidiinae), the effects of these two factors (patch encounter rate and host density) were combined in order to test if the increment in patch residence time for a given decrease in patch encounter rate was larger for high quality patches than for low quality patches.
3. The results show a significant effect of the interaction between the two factors. In high host density patches, parasitoids spent more time if they experienced a low patch encounter rate, while in low host density patches, patch encounter rate had no significant effect on the patch residence time. This suggests that the response of A. rhopalosiphi females to patch encounter rate varied with host density in the patch. Moreover, the same interaction effect was observed for the number of ovipositor contacts on aphids.
4. Parasitoid females can use patch encounter rate to estimate patch density in the habitat but the effect of this estimate on their patch residence time is modulated by patch quality. Staying longer in a patch when patches are rare is more advantageous when the fitness gained by doing so is large. In low quality patches, the expected fitness gain is small and the female may gain more by leaving and taking her chance at finding another patch.  相似文献   

19.
Abstract.  1. Environmental heterogeneity created by prescribed burning provided the context for testing whether the distribution of an oak specialist (the lace bug, Corythuca arcuata ) could be explained by stoichiometric mismatches between herbivore and host plant composition.
2. Field observations showed that lace bug density was seven-fold higher in frequently burned than in unburned units.
3. Lace bug density did not increase with leaf nutrient concentrations, but was instead associated with higher light levels, higher concentrations of leaf carbon (C), lignin and total phenolics, and lower levels of cellulose. In addition, lace bugs reared on high-light leaves had higher levels of survivorship than those fed on low-light leaves.
4. Sampling restricted to full-sun leaves was used to test whether fire-related changes in leaf nitrogen (N) and phosphorus (P) concentrations have a secondary influence on lace bug success. This sampling provided only limited evidence for nutrient limitation, as decreases in leaf N and P were associated with an increase in lace bug mass but a decrease in density.
5. It is concluded that burning probably promotes lace bug population growth by increasing canopy openness, light penetration, and the availability of C-based metabolites, and thus simple stoichoimetric mismatches between herbivores and host plants are not of primary importance in this system.  相似文献   

20.
Phytophagous insects may choose host plants based on conditions that enhance offspring performance. However, some insect species may also select plants based on attributes that enhance their own performance regardless of the consequences for offspring survival. An approach evaluating both hypotheses could provide a more comprehensive understanding of the host plant selection by phytophagous insects. In this study, we described the life stages of a Neotropical stink bug, Edessa contermina, co-occurring on Byrsonima verbascifolia plants in a conservation area of the Brazilian Savannah. We also empirically evaluated how food supply, shelter availability and competitors’ density on the host plants affected the densities of nymphs, adults and mating pairs. We identified and described five life stages of E. contermina. The amount of plant resources did not explain the nymph, adult and mating pairs’ density. However, adults and mating pairs chose plants with a low density of nymphs, probably because egg laying on the host plants with a high density of competitors may negatively affect offspring performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号