首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 592 毫秒
1.
Transplasma membrane electron transport activity by fetal rat liver cells (RLA209-15) infected with a temperature-sensitive strain of SV40 has been measured with cells grown at the restrictive temperature (40°C) and permissive temperature (33°C). The transformed cells grown at 33°C had only one-half the rate of external ferricyanide reduction as the nontransformed cells held at 40°C. Both theK m andV max for ferricyanide reduction were changed in the transformed state. The change inV max can be based on a decrease of NADH in the transformed cells. The change in rate with ferricyanide does not depend on change in surface charge. Reduction of external ferricyanide was accompanied by release of protons from the cells. The ratio of protons released to ferricyanide reduced was higher in the transformed cells than in the non-transformed cells. Since the transplasma membrane electron transport has been shown to stimulate cell growth under limiting serum, the changes in the plasma membrane electron transport and proton release in transformed cells may relate to modification of growth control.  相似文献   

2.
Leishmania donovani promastigotes are capable of reducing certain electron acceptors with redox potential at pH 7 down to -125 mV; outside the plasma membrane promastigotes can reduce ferricyanide. Ferricyanide has been used as an artificial electron acceptor probe for studying the mechanism of transplasma membrane electron transport. Transmembrane ferricyanide reduction by L. donovani promastigotes was not inhibited by such mitochondrial inhibitors as antimycin A or cyanide, but it responded to inhibitors of glycolysis. Transmembrane ferricyanide reduction by Leishmania appears to involve a plasma membrane electron transport chain dissimilar to that of hepatocyte cells. As with other cells, transmembrane electron transport is associated with proton release, which may be involved in internal pH regulation. The Leishmania transmembrane redox system differs from that of mammalian cells in being 4-fold less sensitive to chloroquine and 12-fold more sensitive to niclosamide. Sensitivities to these drugs suggest that transplasma membrane electron transport and associated proton pumping may be targets for the drugs used against leishmaniasis.  相似文献   

3.
Transplasma membrane redox stimulates HeLa cell growth   总被引:2,自引:0,他引:2  
Impermeable ferricyanide stimulates the growth of HeLa cells in absence of fetal bovine serum or other growth factors. A series of impermeable oxidants with redox potentials down to -125 mV stimulate equivalent growth. All of these oxidants are reduced by the transplasma membrane electron transport system. Oxidants with redox potentials below -175 mV are not reduced by the transmembrane electron transport and do not stimulate growth. Insulin which stimulates growth in absence of serum also stimulates transmembrane ferricyanide reduction. Ferricyanide increases growth in presence of insulin. Antitumor drugs, which inhibit HeLa cell growth, inhibit the transplasma membrane redox system. Transplasma membrane electron transport is accompanied by proton release from HeLa cells.  相似文献   

4.
The role of plasma membrane redox activity in light effects in plants   总被引:1,自引:0,他引:1  
Stimulations by light of electron transport at the plasma membrane make it possible that redox activity is involved in light-induced signal transduction chains. This is especially true in cases where component(s) of the chain are also located at the plasma membrane. Photosynthetic reactions stimulate transplasma membrane redox activity of mesophyll cells. Activity is measured as a reduction of the nonpermeating redox probe, ferricyanide. The stimulation is due to production of a cytosolic electron donor from a substance(s) transported from the chloroplast. It is unknown whether the stimulation of redox activity is a requirement for other photosynthetically stimulated processes at the plasma membrane, but a reduced intermediate may regulate proton excretion by guard cells. Blue light induces an absorbance change (LIAC) at the plasma membrane whose difference spectrum resembles certainb-type cytochromes. This transport of electrons may be due to absorption of light by a flavoprotein. The LIAC has been implicated as an early step in certain blue light-mediated morphogenic events. Unrelated to photosynthesis, blue light also stimulates electron transport at the plasma membrane to ferricyanide. The relationship between LIAC and transmembrane electron flow has not yet been determined, but blue light-regulated proton excretion and/or growth may depend on this electron flow. No conclusions can be drawn regarding any role for phytochrome because of a paucity of information concerning the effects of red light on redox activity at the plasma membrane.  相似文献   

5.
Plasma membrane electron transport was studied in a protozoan cell, Tetrahymena pyriformis, by assaying transmembrane ferricyanide reduction and the reduction of iron compounds. The rates of ferricyanide reduction varied between 0.5 and 2.5 mumol/g dry wt. per min, with a pH optimum at 7.0-7.5. Other active non-permeable electron acceptors, with redox potentials from +360 to -125 mV, were cytochrome c, hexaammine ruthenium chloride, ferric-EDTA, ammonium ferric citrate, and indigo di-, tri- and tetrasulfonates. It was found that Tetrahymena cells can reduce external electron acceptors with redox potentials at pH 7.0 down to -125 mV. Ferricyanide stimulates ciliary action. Transmembrane ferricyanide reduction by Tetrahymena was not inhibited by such mitochondrial inhibitors as antimycin A, 2-n-heptyl-4-hydroxyquinoline N-oxide, or potassium cyanide, but it responded to inhibitors of glycolysis. Transmembrane ferricyanide reduction by Tetrahymena appears to involve a plasma membrane electron transport chain similar to those of other animal cells. As in other cells, the transmembrane electron transport is associated with proton release which may be involved in internal pH control. The transmembrane redox system differs from that of mammalian cells in a 20-fold greater sensitivity to chloroquine and quinacrine. The Tetrahymena ferricyanide reduction is also inhibited by chlorpromazine and suramin. Sensitivity to these drugs indicates that the transplasma membrane electron transport and associated proton pumping may be a target for drugs used against malaria, Trypanosomes and other protozoa.  相似文献   

6.
Evidence for coenzyme Q function in transplasma membrane electron transport   总被引:2,自引:0,他引:2  
Transplasma membrane electron transport activity has been associated with stimulation of cell growth. Coenzyme Q is present in plasma membranes and because of its lipid solubility would be a logical carrier to transport electrons across the plasma membrane. Extraction of coenzyme Q from isolated rat liver plasma membranes decreases the NADH ferricyanide reductase and added coenzyme Q10 restores the activity. Piericidin and other analogs of coenzyme Q inhibit transplasma membrane electron transport as measured by ferricyanide reduction by intact cells and NADH ferricyanide reduction by isolated plasma membranes. The inhibition by the analogs is reversed by added coenzyme Q10. Thus, coenzyme Q in plasma membrane may act as a transmembrane electron carrier for the redox system which has been shown to control cell growth.  相似文献   

7.
Retinoic acid inhibits the reduction of diferric transferrin through the transplasma membrane electron transport system on fetal rat liver cells infected with a temperature-sensitive SV40 virus when the cells are in the nontransformed state cultured at 40°C. When the cells are in the transformed state (grown at the permissive 33°C temperature), retinoic acid does not inhibit the diferric transferrin reduction. Inhibition of activity of nontransformed cells is specific for retinoic acid with only slight inhibition by retinol and retinyl acetate at higher concentrations. Isolated rat liver plasma membrane NADH diferric transferrin reductase is also inhibited by retinoic acid. The effect of transformation with SV40 virus to decrease susceptibility to retinoic acid inhibition stands in contrast to much greater adriamycin inhibition of diferric transferrin reduction in the transformed cells than in nontransformed cells.  相似文献   

8.
在本文中,我们用荧光能量共振转移分析和荧光显微技术证明,小鼠艾氏乳腺癌腹水细胞质膜NADH-铁氰化钾氧化还原反应的电子传递所偶联的质子泵活性能诱导细胞与人工脂质体融合。糖酵解代谢的抑制剂碘乙酸能抑制融合,同时融合过程是吸取质子的。近几年来,我们实验室已报道了多种生物膜质子泵均具有诱导膜融合的功能。因此,质子泵诱导膜融合可能具有比较广泛的生理意义。并为细胞中存在有受能量代谢控制的驱动膜融合的生理机制提供了实验证据。  相似文献   

9.
Transplasma membrane electron transport, as assayed by external ferricyanide reduction, has been related to control of growth and hormone response of cells. Elicitor-stimulated transmembrane NADPH oxidase is important for bacteriocidal superoxide production by neutrophils. Since adriamycin is myelosuppressive and can stimulate superoxide production, its effects on the two redox systems of porcine neutrophil plasma membranes were compared. Adriamycin inhibits transplasma membrane ferricyanide and stimulates superoxide production activated by phorbol myristate acetate (PMA). Ferricyanide reduction in PMA-treated cells becomes resistant to inhibition by adriamycin. These results provide evidence for an independent effect of adriamycin on transmembrane ferricyanide reduction and on superoxide generation.  相似文献   

10.
Transplasma membrane electron transport, as assayed by external ferricyanide reduction, has been related to control of growth and hormone response of cells. Elicitor-stimulated transmembrane NADPH oxidase is important for bacteriocidal superoxide production by neutrophils. Since adriamycin is myelosuppressive and can stimulate superoxide production, its effects on the two redox systems of porcine neutrophil plasma membranes were compared. Adriamycin inhibits transplasma membrane ferricyanide and stimulates superoxide production activated by phorbal myristate acetate (PMA). Ferricyanide reduction in PMA-treated cells becomes resistant to inhibition by adriamycin. These results provide evidence for an independent effect of adriamycin on transmembrane ferricyanide reduction and on superoxide generation.  相似文献   

11.
以谷胱甘肽为电子供体的细胞膜氧化还原系统   总被引:1,自引:0,他引:1  
内载谷胱甘肽(GSH)的大豆(Glycine max L.)下胚轴正向型质膜囊泡具有以GSH为电子供体的跨膜电子传递活性,能还原膜外电子受体FeCN和细胞色素(Cyt)C,其还原速率分别为(21.6±0.6)nmolFeCN·min~(-1)·mg~(-1)蛋白和(6.6±1.0)nmol Cyt C·min~(-1)·mg~(-1)蛋白。这种跨膜电子传递能引起膜上Cyt P-450吸收光谱标志带(Soret带)的变化,表明Cyt P-450参与了这一氧化还原过程。在跨质膜电子传递的同时伴随着H~ 运输和膜电位的改变。  相似文献   

12.
Transmembrane ferricyanide reduction in carrot cells   总被引:2,自引:0,他引:2  
Carrot cells (Daucus carota) grown in tissue culture are capable of reducing the non-permeable electron acceptor, ferricyanide, with concomitant proton extrusion from the cell. Optimum conditions for transmembrane ferricyanide reduction include a pH of 7.0-7.5 in a medium containing 10 mM each KCl, NaCl and CaCl2. Data are shown to prove that transmembrane ferricyanide reduction is an enzymatic process. It does not depend on the secretion of phenolics from the cell within the time limits of the assay (10 min). The presence of broken cells and cell fragments are excluded on the basis of stimulation or only slight inhibition by mitochondrial inhibitors. However, transmembrane ferricyanide reduction by carrot cells is inhibited about 50% by various glycolysis inhibitors, which are presumed to reduce the internal levels of NADH. Treatment of cells with p-diazoniumbenzenesulfonic acid, a non-permeant membrane modifying agent, also inhibits transmembrane ferricyanide reduction more than 90%. The data presented support the existence of a transplasma membrane redox system in carrot cells.  相似文献   

13.
The short-term incubation of HeLa cells in the presence of diferric transferrin or ferricyanide, which are reduced externally by the transplasma membrane reductase, produces a stoichiometric decrease in NADH and increase in NAD+, which is stimulated by insulin. The NADP/NADPH ratio does not change during 15 min incubation with the oxidants. The total pyridine nucleotide pool of HeLa cells is not affected. Incubation with apotransferrin and ferrocyanide, which cannot act as oxidants for transmembrane electron transport, does not change the pyridine nucleotide concentrations in the cells. Our results show that NADH can act as the internal electron donor for the reduction of external oxidants by the transmembrane reductase. It appears that oxidation of NADH by the transmembrane electron transport using ferricyanide or iron transferrin as external electron acceptors is sufficient to stimulate growth in HeLa cells.  相似文献   

14.
Characterization of VDAC1 as a plasma membrane NADH-oxidoreductase   总被引:1,自引:0,他引:1  
We have recently demonstrated that voltage dependent anion selective channel~1 (porin, isoform 1) can function as a transplasma membrane NADH:ferricyanide-reductase. However, both the specific redox characteristics and the mechanism of electron transport in this enzyme presently remain unclear. Here we demonstrate that the redox capability of porin 1 is specific for ferricyanide as this same enzyme cannot reduce DCIP or cytochrome c in vitro. Furthermore, NADH-dependent ferricyanide reduction associated with VDAC1 is not sensitive to the anion channel inhibitors DIDS and dextran sulfate. However, this activity can be inhibited by thiol chelators, suggesting that at least one of the two cysteine groups present in VDAC1 are critical for electron transfer. We propose a model on how electron transport may occur in VDAC1.  相似文献   

15.
Transformation of 3T3 cells by SV40 virus changes the properties of the transplasma membrane electron transport activity which can be assayed by reduction of external ferric salts. After 42 h of culture and before the growth rate is maximum, the transformed cells have a much slower rate of ferric reduction. The change in activity is expressed both by change inK m andV max for ferricyanide reduction. The change in activity is not based on surface charge effect or on tight coupling to proton release or on intracellular NADH concentration. With transformation by SV40 virus infection the expression of transferrin receptors increases, which correlates with greater diferric transferrin stimulation of the rate of ferric ammonium citrate reduction in transformed SV40-3T3 cells than in 3T3 cells.  相似文献   

16.
Transplasmalemma electron transport by HeLa and pineal cells to reduce external ferricyanide is associated with proton release from the cells. Diferric transferrin also acts as an electron acceptor for the transmembrane oxidoreductase. We now show that reduction of external diferric transferrin by RPNA-209-1 SV40 transformed pineal cells is accompanied by proton release from the cells. The stoichiometry of proton release to electron transfer is much greater than would be expected from aniostropic electron flow across the membrane through protonated carriers. The proton release is not stimulated by apotransferrin and the diferric transferrin-stimulated activity is inhibited by apotransferrin. Apotransferrin also inhibits reduction of diferric transferrin by these cells. The proton release is dependent on external sodium ions and is inhibited by amiloride, which indicates that the proton release is mediated by the Na+/H+ antiport and that this antiport is activated by electron transport through the transmembrane dehydrogenase. Growth stimulation by diferric transferrin or other external oxidants can be based in part on activation of the Na+/H+ antiport.  相似文献   

17.
The impermeable electron acceptor ferricyanide stimulates the growth of HeLa cells in the absence of serum and increases cell replication with limiting amounts of serum (0.75%). Maximum growth stimulation occurs at low ferricyanide concentration from 0.01 to 0.1 mM. Higher ferricyanide concentrations inhibit growth on serum. Addition of insulin enhances the stimulating effect of ferricyanide. Increase in the transplasmalemma electron transport activity in the presence of insulin is also observed by measuring the rate of ferricyanide reduction by cells. There is a close correlation between insulin stimulation of ferricyanide reduction and insulin induction of cell proliferation and attachment. In addition to ferricyanide, the growth response is observed with other impermeable oxidants, such as indigotetrasulfonate and hexaamine ruthenium III, which are reduced by the transplasma membrane electron transport system. Inactive oxidants such as cytochrome c do not stimulate cell growth. Ferrocyanide does not stimulate growth. We propose that electron flow through the transplasma membrane electron transport system stimulates growth and that insulin acts to increase that flow.  相似文献   

18.
Conjugates of adriamycin crosslinked to transferrin with glutaraldehyde inhibit proliferation of transformed cells. Conjugates of this type inhibit oxidoreductase activity in the plasma membrane of K562 cells, and the inhibition of electron transport is found at concentrations ten times lower than concentrations of free adriamycin which inhibit electron transport and cell growth. The transferrin-adriamycin conjugate inhibits ferricyanide reduction, diferric transferrin reduction and plasma membrane NADH oxidase activity stimulated by transferrin. Activation of proton release from the K562 cells by diferric transferrin also is inhibited by the conjugate, and conjugate kills cells more effectively than free adriamycin. Since the conjugate does not transfer adriamycin to the nucleus, the growth control may be based on inhibition of the transferrin regulated redox system and Na+/H+ antiport activity at the plasma membrane.  相似文献   

19.
Cultured carrot cells exhibit transmembrane ferricyanide reduction through a plasma membrane redox system, which may be associated with an iron reduction and uptake system in plant roots. Here we provide evidence for the inhibition of transplasma membrane ferricyanide reduction by four different Ca2+-calmodulin type antagonists, calmidazolium, trifluoperazine, pimozide and fluphenazine. These compounds inhibit in low concentrations (approximately 5-10 microM) in a time-dependent manner. Higher concentrations (50-100 microM) are required to inhibit transmembrane ferricyanide reduction in 10 min rather than in 30 min. The permeable calcium chelator, TMB-8, also inhibits transmembrane ferricyanide reduction in carrot cells. Since the redox system is controlled by hormones, the effects of anticalmodulin agents on hormone response may be mediated through the redox system.  相似文献   

20.
A transmembrane ferricyanide reductase activity was assayed in intact Ehrlich ascites tumor cells. Kinetic measurements gave a Km of 0.14 mM and a Vmax of 0.31 mumol/min per 10(6) cells. In short-term batch experiments, this activity was enhanced in the presence of 10 mM lactate, a source of cytosolic NADH. The transmembrane redox activity was accompanied by alkalinization of the cytosol. Both ferricyanide reduction and proton extrusion were diminished in the presence of 0.2 mM amiloride. Several cytotoxic drugs significantly inhibited the ferricyanide reductase activity at concentrations at which they show antineoplastic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号