首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
3.
The study of gene function in testis and sperm has been greatly assisted by transgenic mouse models. Recently, an alternative way of expressing transgenes in mouse testis has been developed that uses electroporation to introduce transgenes into the male germ cells. This approach has been successfully used to transiently express reporter genes driven by constitutive and testis-specific promoters. It has been proposed as an alternative method for studying gene function in testis and sperm, and as a novel way to create transgenic animals. However, the low levels and transient nature of transgene expression that can be achieved using this technique have raised concerns about its practical usefulness. It has also not been demonstrated in mammals other than mice. In this study, we show for the first time that in vivo gene transfer using electroporation can be used to express a fluorescent transgene in the testis of a mammal other than mice, the Syrian golden hamster. Significantly, for the first time we demonstrate expression of a transgene in epididymal sperm using this approach. We show that expression of the transgene can be detected in sperm for as long as 60 days following gene transfer. Finally, we provide the first systematic demonstration that this technique does not lead to any significant long-term adverse effects on testicular integrity and sperm quality. This technique therefore offers a novel way to study gene function during fertilization in hamsters and may also have potential as a way of creating transgenic versions of this important model species.  相似文献   

4.
5.
Spermatogenesis consists of complex cellular and developmental processes, such as the mitotic proliferation of spermatogonial stem cells, meiotic division of spermatocytes, and morphogenesis of haploid spermatids. In this study, we show that RNA interference (RNAi) functions throughout spermatogenesis in mice. We first carried out in vivo DNA electroporation of the testis during the first wave of spermatogenesis to enable foreign gene expression in spermatogenic cells at different stages of differentiation. Using prepubertal testes at different ages and differentiation stage-specific promoters, reporter gene expression was predominantly observed in spermatogonia, spermatocytes, and round spermatids. This method was next applied to introduce DNA vectors that express small hairpin RNAs, and the sequence-specific reduction in the reporter gene products was confirmed at each stage of spermatogenesis. RNAi against endogenous Dmc1, which encodes a DNA recombinase that is expressed and functionally required in spermatocytes, led to the same phenotypes observed in null mutant mice. Thus, RNAi is effective in male germ cells during mitosis and meiosis as well as in haploid cells. This experimental system provides a novel tool for the rapid, first-pass assessment of the physiological functions of spermatogenic genes in vivo.  相似文献   

6.
It is generally believed that too high or low levels of endothelin-1 (ET-1), a strong vasoconstrictor, may be detrimental to animals. Therefore, in order to understand the in vivo function of ET-1, we used a conditional transgenic approach, Cre/loxP recombination system, to generate transgenic mice that over-express ET-1 in a tissue-specific manner. In such a strategy a single transgenic mouse line, ELSE, was initially generated where a general promoter, human elongation factor 1alpha (hEF1alpha) promoter, was used to drive the expression of a loxP-flanked sequence containing the lacZ reporter gene and a STOP cassette before the ET-1 cDNA, the recombinational competency of which was confirmed in an Escherichia coli test system. In ELSE mice, expression of the reporter lacZ was limited to spermatozoa and spermatogonia as well as Sertoli, Leydig and endothelial cells in the testis, thus confirming the suitability of these mice for the generation of testes-limited ET-1 expression. To generate transgenic progeny with ET-1 over-expression in the testis (successful recombination, ELSE/ELT), ELSE mice were mated with EIIa-cre mice expressing Cre recombinase in pre-implantation mouse embryos. These ELSE/ELT mice exhibiting testis-specific ET-1 over-expression had normal reproductive function and showed no obvious alterations in gross testicular morphology. Although over-expression of ET-1 leads to reduction of testicular blood flow, young adult ELSE/ELT mice showed no obvious signs of inflammation, fibrosis or abnormal proliferation of cells in the testes of young ELSE/ELT mice by histochemical analyses.  相似文献   

7.
8.
9.
Expression of the lacZ reporter gene under the control of five deletion derivatives of the copia regulatory region including the 5' long terminal repeat (LTR) and the 5' untranslated region (UTR) was assayed in the testes of transgenic Drosophila melanogaster males (larvae and imago). The full-length copia regulatory region (LTR + UTR) ensured expression of the reporter gene in testes of both larvae and adult males. Deletion of UTR or 3' end of LTR increased lacZ expression in the testes, whereas deletion of the 5' end of LTR increased it. This indicated that a positive regulator of copia expression is at the 5' end of LTR and that negative regulators are at the 3' end of LTR and in UTR. The effects of the fragments of the copia regulatory region on reporter gene expression in the testes in vivo did not completely coincide with the effects observed earlier in cultured cells. We suggest that this difference is due to different regulation of expression of the fusion constructs integrated into chromatin as compared to their transient expression.  相似文献   

10.
Current techniques for making transgenic mice are cumbersome, requiring trained personnel, costly infrastructure and collection of many zygotes from mice that are then killed. We developed a reproducible nonterminal technique for transfecting genes in undifferentiated spermatogonia through in vivo electroporation of the testis; about 94% of male mice electroporated with different transgenes successfully sired transgenic pups. Such electroporated males provide a valuable resource for continuous production of transgenic founders for more than a year.  相似文献   

11.
A rat line was generated in which genomic integration of a ROSA-EGFP transgene resulted in exclusive expression of EGFP in the germ cells of both sexes. EGFP expression was uniform and robust in cleavage stage embryos beginning at the late 2-cell stage and continuing through blastocyst development where expression became restricted to cells of the inner cell mass. Subsequent analysis showed high EGFP expression exclusively in primordial, embryonic, and adult germ cells. This unique expression pattern makes this EGFP marked locus the first molecular marker of the germline lineage in both sexes in mammals. FISH was used to localize the transgene insertion to chromosome 11q11-q12, proximal to Grik1 and near Ncam2. Analysis of the region did not identify known germ cell-specific genes but did identify 19 ESTs or transcribed loci present in testes, ovary, or pre-implantation libraries from mice or rats. To assess the utility of the transgenic line for germ cell transplantation studies, non-selected, freshly isolated seminiferous tubule cells were transferred to the testis of recipient males. The donor cell population colonized the testis at a surprisingly high efficiency within 30 days following transfer. Since EGFP is a vital marker, the colonization process can be followed in vivo and the extent of colonization quantified. The unique germ cell specific expression of EGFP makes this line of transgenic rats an excellent novel tool to study germ cell origin, development, and differentiation, and to assess the plasticity of adult somatic stem cells to become male germ cells.  相似文献   

12.
13.
Testis mediated gene transfer (TMGT) is a potential tool for making transgenic mice having more than 90% success rate. However, this method needs further standardization before it can be adapted in other species including livestock. In order to standardize the TMGT in goat, buck testes (n = 20) collected from the slaughter house were injected with a vector driving green fluorescent protein (GFP) expression under a cytomegalovirus (CMV) promoter. Then, the testes were subjected to electroporation with predetermined voltage, pulse length, pulse interval and number of pulses. Seminiferous tubules were isolated from the electroporated testis and cultured in-vitro. The expression was checked at regular intervals. Green fluorescence was observed on different days in different samples. It suggests transient integration of the plasmid into the seminiferous tubules. This in-vitro transfection of seminiferous tubule using electroporation will provide valuable baseline information.  相似文献   

14.
15.
In this report, we describe an optimized method for generation of ephA8 BAC transgenic mice expressing the lacZ reporter gene under ephA8 regulatory sequences. First, we constructed a targeting vector that carries a 1.2 kb ephA8 DNA upstream of its first exon, a lacZ expression cassette, a kanamycin cassette, and a 0.7 kb ephA8 DNA downstream of its first exon. Second, the targeting vector was electroporated into cells containing the ephA8 BAC and pKOBEGA, in which recombinases induce a homologous recombination between the ephA8 BAC DNA and the targeting vector. Third, the FLP plasmid expressing the Flipase was electroporated into these bacteria to eliminate a kanamycin cassette from the recombinant BAC DNA. The appropriate structures of the modified ephA8 BAC DNA were confirmed by Southern analysis. Finally, BAC transgenic mouse embryos were generated by pronuclear injection of the recombinant BAC DNA. Whole mount X-gal staining revealed that the lacZ reporter expression is restricted to the anterior region of the developing midbrain in each transgenic embryo. These results indicate that the ephA8 BAC DNA contains most, if not all, regulatory sequences to direct temporal and spatial expression of the lacZ gene in vivo.  相似文献   

16.
It has been established that two developmentally and functionally distinct cell types emerge within the mammalian testis and adrenal gland throughout life. Fetal and adult types of steroidogenic cells (i.e., testicular Leydig cells and adrenocortical cells) develop in the prenatal and postnatal period, respectively. Although the ovary synthesizes steroids postnatally, the presence of fetal-type steroidogenic cells has not been described. We had previously established transgenic mouse lines in which fetal Leydig cells were labeled with an EGFP reporter gene by the FLE (fetal Leydig enhancer) of the Ad4BP/SF-1 (Nr5a1) gene. In the present study, we examined the reporter gene expression in females and found that the reporter gene is turned on in postnatal ovaries. A comparison of the expressions of the EGFP and marker genes revealed that EGFP is expressed in not all but rather a proportion of steroidogenic theca and in interstitial gland cells in the ovary. This finding was further supported by experiments using BAC transgenic mice in which reporter gene expression recapitulated endogenous Ad4BP/SF-1 gene expression. In conclusion, our observations from this study strongly suggest that ovarian theca and interstitial gland cells in mice consist of at least two cell types.  相似文献   

17.
18.
Sertoli cells are the primary structural component of the fetal testis cords and postnatal seminiferous tubules. Live imaging technologies facilitate the visualization of cell morphologies and behaviors through developmental processes. A transgenic mouse line was generated using a fragment of the rat Gata4 gene to direct the expression of a dual-color fluorescent protein reporter in fetal and adult Sertoli cells. The reporter encoded a red fluorescent protein, monomeric Cherry (mCherry), fused to histone 2B and enhanced green fluorescent protein (EGFP) fused to a glycosylphosphatidylinositol sequence, with a self-cleaving 2A polypeptide separating the two fusion proteins. After translation, the red and green fluorescent proteins translocated to the nucleus and plasma membrane, respectively, of Sertoli cells. Transgene expression in testes was first detected by fluorescent microscopy around Embryonic Day 12.0. Sertoli cell division and migration were visualized during testis cord formation in organ culture. Initially, the Sertoli cells had mesenchyme-like morphologies and behaviors, but later, the cells migrated to the periphery of the testis cords to become epithelialized. In postnatal seminiferous tubules, Sertoli nuclei were evenly spaced when viewed from the external surface of tubules, and Sertoli cytoplasm and membranes were associated with germ cells basally in a rosette pattern. This mouse line was bred to previously described transgenic mouse lines expressing EGFP in Sertoli cytoplasm or a nuclear cyan fluorescent protein (Cerulean) and mCherry in plasma membranes of germ cells. This revealed the physical relationship between Sertoli and germ cells in developing testis cords and provided a novel perspective on Sertoli cell development.  相似文献   

19.
Although much research has focused on transferring exogenous genes into living mouse testis to investigate specific gene functions in spermatogenic, Sertoli, and Leydig cells, relatively little is known regarding real-time gene expression in vivo. In this study, we constructed a bicistronic lentiviral vector (LV) encoding firefly luciferase and enhanced green fluorescence protein (EGFP); this was a highly efficient in vivo gene transfer tool. After microinjecting LV into the seminiferous tubules the ICR mouse testis, we detected luciferase and EGFP expression in vivo and ex vivo in the injected tubules using bioluminescence imaging (BLI) with the IVIS-200 system and fibered confocal fluorescence microscopy (CellViZio), respectively. In addition, with an in vivo BLI system, luciferase expression in the testis was detected for ∼3 mo. Furthermore, EGFP expression in seminiferous tubules was confirmed in excised testes via three-dimensional fluorescent imaging with a confocal laser-scanning microscope. With immunostaining, EGFP expression was confirmed in several male germ cell types in the seminiferous tubules, as well as in Sertoli and Leydig cells. In conclusion, we demonstrated that real-time in vivo BLI analysis can be used to noninvasively (in vivo) monitor long-term luciferase expression in mouse testis, and we verified that EGFP expression is localized in seminiferous tubules after bicistronic LV-mediated gene transfer into mouse testes. Furthermore, we anticipate the future use of in vivo BLI technology for real-time study of specific genes involved in spermatogenesis.  相似文献   

20.
To study the complex molecular mechanisms of mammalian spermatogenesis, it would be useful to be able to isolate cells at each stage of differentiation, especially at the stage in which the cells switch from mitosis to meiosis. Currently, no useful marker proteins or gene promoters specific to this important stage are known. We report here a transgenic mouse line that under the control of the promoter for a histone variant, H2A.X, expressed an enhanced green fluorescent protein (EGFP) in cells at the stage of the mitosis-meiosis switch. Endogenous H2A.X is expressed in type A spermatogonia through meiotic prophase spermatocytes in testis and in some somatic cells. However, despite the fact that its expression was driven by the H2A.X promoter, the EGFP expressed in the transgenic mice specifically labeled only the intermediate spermatogonia stage through the meiotic prophase spermatocyte stage in transgenic mice containing the -600-base pair H2A.X promoter/EGFP construct. Type A spermatogonia and somatic cells of other organs were not labeled. This expression pattern made it possible to isolate living cells from the testis of the transgenic mice at the stage of the mitosis-meiosis switch in spermatogenesis using EGFP fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号