首页 | 官方网站   微博 | 高级检索  
     


A Bottom‐Up Approach toward All‐Solution‐Processed High‐Efficiency Cu(In,Ga)S2 Photocathodes for Solar Water Splitting
Authors:Néstor Guijarro  Mathieu S Prévot  Xiaoyun Yu  Xavier A Jeanbourquin  Pauline Bornoz  Wiktor Bourée  Melissa Johnson  Florian Le Formal  Kevin Sivula
Affiliation:Laboratory for Molecular Engineering of Optoelectronic Nanomaterials, école Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Abstract:The development of solution‐processable routes to prepare efficient photoelectrodes for water splitting is highly desirable to reduce manufacturing costs. Recently, sulfide chalcopyrites (Cu(In,Ga)S2) have attracted attention as photocathodes for hydrogen evolution owing to their outstanding optoelectronic properties and their band gap—wider than their selenide counterparts—which can potentially increase the attainable photovoltage. A straightforward and all‐solution‐processable approach for the fabrication of highly efficient photocathodes based on Cu(In,Ga)S2 is reported for the first time. It is demonstrated that semiconductor nanocrystals can be successfully employed as building blocks to prepare phase‐pure microcrystalline thin films by incorporating different additives (Sb, Bi, Mg) that promote the coalescence of the nanocrystals during annealing. Importantly, the grain size is directly correlated to improved charge transport for Sb and Bi additives, but it is shown that secondary effects can be detrimental to performance even with large grains (for Mg). For optimized electrodes, the sequential deposition of thin layers of n‐type CdS and TiO2 by solution‐based methods, and platinum as an electrocatalyst, leads to stable photocurrents saturating at 8.0 mA cm–2 and onsetting at ≈0.6 V versus RHE under AM 1.5G illumination for CuInS2 films. Electrodes prepared by our method rival the state‐of‐the‐art performance for these materials.
Keywords:chalcopyrite  electrochemistry  nanocrystals  photocatalysis  solar hydrogen
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号