Evolution of insect mushroom bodies: old clues,new insights |
| |
Affiliation: | 1. Evolutionary Biology and Ecology, Université Libre de Bruxelles, 1050 Brussels, Belgium;2. Centre for Social Evolution, University of Copenhagen, 2100 Copenhagen, Denmark;1. Department of Biology, Boston University, 5 Cummington Mall, Boston MA, 02215, USA;2. Graduate Program for Neuroscience, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA |
| |
Abstract: | The mushroom bodies are a morphologically diverse sensory integration and learning and memory center in the brains of various invertebrate species, of which those of insects are the best described. Insect mushroom bodies are composed of numerous tiny intrinsic neurons (Kenyon cells) that form calyces with their dendrites and a pedunculus and lobes with their axons. The identities of conserved Kenyon cell subpopulations and the correlations between morphological and functional specializations of the mushroom bodies are just beginning to be elucidated, providing insight into mechanisms of mushroom body evolution. Comparisons of mushroom body organization in different insect lineages reveal trends in the evolution of subcompartments correlated with the elaboration, reduction, acquisition or loss of Kenyon cell subpopulations. Furthermore, these changes often appear correlated with variation in type and strength of afferent input and in behavioral ecology. These and other features of mushroom body organization suggest a striking convergence with mammalian cortex, with Kenyon cell subpopulations displaying evolutionary modularity in a manner reminiscent of cortical areas. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|