首页 | 本学科首页   官方微博 | 高级检索  
     


SAS1 and SAS2, GTP-binding protein genes in Dictyostelium discoideum with sequence similarities to essential genes in Saccharomyces cerevisiae.
Authors:S A Saxe and A R Kimmel
Affiliation:Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases (6/B1-12), Bethesda, Maryland 20892.
Abstract:We have identified two novel, very closely related genes, SAS1 and SAS2, from Dictyostelium discoideum. These encode small, approximately 20-kilodaton proteins with amino acid sequences thought to be involved in interaction with guanine nucleotides. The protein sizes, spacings of GTP-binding domains, and carboxyl-terminal sequences suggest their relationship to the ubiquitous ras-type proteins. Their sequences, however, are sufficiently different to indicate that they are not true ras proteins. More extensive sequence identity (approximately 55%) is shared with the YPT1 and SEC4 proteins from Saccharomyces cerevisiae. These yeast proteins are essential for growth and are believed to be involved in intracellular signaling associated with membrane function. SAS1 and SAS2 exhibit distinct patterns of genomic organization and developmentally regulated gene expression. SAS1 contains introns and is associated with a developmentally regulated repetitive element. SAS2 is colinear with its mRNA and does not appear to be closely linked with this repetitive element. Both genes are expressed during growth and throughout development. SAS1 is maximally expressed during cytodifferentiation, when two sizes of SAS1 mRNA are detectable. SAS2 mRNA levels are maximal during culmination. On the basis of the expression patterns of the SAS genes and their relationship to the YPT1 and SEC4 genes, we discuss possible functions of the SAS proteins.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号