首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of erythrocyte membrane tension for hemolysis prediction in complex flows
Authors:Mohammad M. Faghih  M. Keith Sharp
Affiliation:1.Biofluid Mechanics Laboratory, Department of Mechanical Engineering,University of Louisville,Louisville,USA
Abstract:Hemolysis is a persistent issue with blood-contacting devices. Many experimental and theoretical contributions over the last few decades have increased insight into the mechanisms of hemolysis in both laminar and turbulent flows, with the ultimate goal of developing a comprehensive, mechanistic hemolysis model. Many models assume that hemolysis scales with a resultant, scalar stress representing all components of the fluid stress tensor. This study critically evaluates this scalar stress hypothesis by calculating the response of the red blood cell membrane to different types of fluid stress (laminar shear and extension, and three turbulent shear and extension cases), each with the same scalar stress. It was found that even though the scalar stress is the same for all cases, membrane tension varied by up to three orders of magnitude. In addition, extensional flow causes constant tension, while tank-treading in shear flow causes periodic tension, with tank-treading frequency varying by three orders of magnitude among the cases. For turbulent flow, tension also depends on eddy size. It is concluded, therefore, that scalar stress alone is inadequate for scaling hemolysis. Fundamental investigations are needed to establish a new index of the fluid stress tensor that provides reliable hemolysis prediction across the wide range of complex flows that occur in cardiovascular devices.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号