首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Affinity labelling with MgATP analogues reveals coexisting Na+ and K+ forms of the alpha-subunits of Na+/K+-ATPase.
Authors:R Antolovic  E Hamer  E H Serpersu  H Kost  H Linnertz  Z Kovarik  W Schoner
Institution:Institut für Biochemie und Endokrinologie, Facbereich Veterin?rmedizin, Justus-Liebig-Universit?t Giessen, Germany.
Abstract:To test the hypothesis that Na+/K+-ATPase works as an (alpha beta)2-diprotomer with interacting catalytic alpha-subunits, tryptic digestion of pig kidney enzyme, that had been inactivated with substitution-inert MgATP complex analogues, was performed. This led to the demonstration of coexisting C-terminal Na+-like 80-kDa as well as K+-like 60-kDa peptides and N-terminal 40-kDa peptides of the alpha-subunit. To localize the ATP binding sites on tryptic peptides, studies with radioactive MgATP complex analogues were performed: Co(NH3)4-8-N3-ATP specifically modified the E2ATP (low affinity) binding site of Na+/K+-ATPase with an inactivation rate constant (k2) of 12 x 10-3.min-1 at 37 degrees C and a dissociation constant (Kd) of 207 +/- 28 microm. Tryptic digestion of the gamma32P]Co(NH3)4-8-N3-ATP-inactivated and photolabelled alpha-subunit (Mr = 100 kDa) led, in the absence of univalent cations, to a K+-like C-terminal 60-kDa fragment which was labelled in addition to an unlabelled Na+-like C-terminal 80-kDa fragment. Tryptic digestion of alpha32P]-or gamma32P]Cr(H2O)4ATP - bound to the E1ATP (high affinity) site - led to the labelling of a Na+-like 80-kDa fragment besides the immediate formation of an unlabelled K+-like N-terminal 40-kDa fragment and a C-terminal 60-kDa fragment. Because a labelled Na+-like 80-kDa fragment cannot result from an unlabelled K+-like 60-kDa fragment, and because unlabelled alpha-subunits did not show any catalytic activity, the findings are consistent with a situation in which Na+- and K+-like conformations are stabilized by tight binding of substitution-inert MgATP complex analogues to the E1ATP and E2ATP sites. Hence, all data are consistent with the hypothesis that ATP binding induces coexisting Na+ and K+ conformations within an (alphabeta)2-diprotomeric Na+/K+-ATPase.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号