首页 | 本学科首页   官方微博 | 高级检索  
     


Dimerization by domain hybridization bestows chaperone and isomerase activities
Authors:Zhao Zhen  Peng Yi  Hao Shu-Feng  Zeng Zong-Hao  Wang Chih-Chen
Affiliation:National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academi of Sciences, Beijing, China.
Abstract:Thioredoxin, DsbA, the N-terminal active-site domain a and the non-active-site domain b of protein-disulfide isomerase are all monomeric with a thioredoxin fold, and each exhibits low or no isomerase and chaperone activity. We have linked the N terminus of the above four monomers, individually, to the C terminus of the N-terminal domain of DsbC via the flexible linker helix of the latter to produce four domain hybrids, DsbCn-Trx, DsbCn-DsbA, DsbCn-PDIa, and DsbCn-PDIb. These four hybrid proteins form homodimers, and except for DsbCn-PDIb they exhibit new or greatly elevated isomerase as well as chaperone activity. Three-dimensional structure prediction indicates that all the four domain hybrids adopt DsbC-like V-shaped structure with a broad uncharged cleft between the two arms for binding of non-native protein folding intermediates. The results provide strong evidence that dimerization creates chaperone and isomerase activity for monomeric thiol-protein oxidases or reductases, and suggesting a pathway for proteins to acquire new functions and/or higher biological efficiency during evolution.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号