首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Impact of dissolved oxygen and loading rate on NH3 oxidation and N2 production mechanisms in activated sludge treatment of sewage
Authors:Xueyu Zhang  Shida Li  Shaokui Zheng  Shoupeng Duan
Institution:MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875 China
Abstract:Microaerobic activated sludge (MAS) is a one-stage process operated at 0.5–1.0 mg l−1 dissolved oxygen (DO) aiming at simultaneous nitrification and denitrification. We used molecular techniques and a comprehensive nitrogen (N)-transformation activity test to investigate the dominant NH3-oxidizing and N2-producing mechanism as well as the dominant ammonia-oxidizing bacteria (AOB) species in sludge samples individually collected from an MAS system and a conventional anoxic/oxic (A/O) system; both systems were operated at a normal loading rate (i.e. 1.0 kg chemical oxygen demand (COD) m−3 day−1 and 0.1 kg NH4+-N m−3 day−1) in our previous studies. The DO levels in both systems (aerobic: conventional A/O system; microaerobic: MAS system) did not affect the dominant NH3-oxidizing mechanism or the dominant AOB species. This study further demonstrated the feasibility of a higher loading rate (i.e. 2.30 kg COD m−3 day−1 and 0.34 kg NH4+-N m−3 day−1) with the MAS process during sewage treatment, which achieved a 40% reduction in aeration energy consumption than that obtained in the conventional A/O system. The increase in loading rates in the MAS system did not affect the dominant NH3-oxidizing mechanism but did impact the dominant AOB species. Besides, N2 was predominantly produced by microaerobic denitrification in the MAS system at the two loading rates.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号