首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Functional redundancy imparts process stability to acidic Fe(II)-oxidizing microbial reactors
Authors:Diana Ayala-Muñoz  Rachel L Simister  Sean A Crowe  Jennifer L Macalady  William D Burgos
Institution:1. Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, Pennsylvania, 16802 USA;2. Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3 Canada;3. Department of Geosciences, The Pennsylvania State University, 210 Deike Building, University Park, Pennsylvania, 16802 USA
Abstract:In previous work, lab-scale reactors designed to study microbial Fe(II) oxidation rates at low pH were found to have stable rates under a wide range of pH and Fe(II) concentrations. Since the stirred reactor environment eliminates many of the temporal and spatial variations that promote high diversity among microbial populations in nature, we were surprised that the reactors supported multiple taxa presumed to be autotrophic Fe(II) oxidizers based on their phylogeny. Metagenomic analyses of the reactor communities revealed differences in the metabolic potential of these taxa with respect to Fe(II) oxidation and carbon fixation pathways, acquisition of potentially growth-limiting substrates and the ability to form biofilms. Our findings support the hypothesis that the long-term co-existence of multiple autotrophic Fe(II)-oxidizing populations in the reactors are due to distinct metabolic potential that supports differential growth in response to limiting resources such as nitrogen, phosphorus and oxygen. Our data also highlight the role of biofilms in creating spatially distinct geochemical niches that enable the co-existence of multiple taxa that occupy the same apparent metabolic niche when the system is viewed in bulk. The distribution of key metabolic functions across different co-existing taxa supported functional redundancy and imparted process stability to these reactors.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号