首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The A modules of the Azotobacter vinelandii mannuronan-C-5-epimerase AlgE1 are sufficient for both epimerization and binding of Ca2+.
Authors:H Ertesv?g  S Valla
Institution:UNIGEN Center for Molecular Biology and Department of Biotechnology, Norwegian University of Technology and Science, N-7489 Trondheim, Norway. Helga.Ertesvag@unigen.ntnu.no
Abstract:The industrially important polysaccharide alginate is composed of the two sugar monomers beta-D-mannuronic acid (M) and its epimer alpha-L-guluronic acid (G). In the bacterium Azotobacter vinelandii, the G residues originate from a polymer-level reaction catalyzed by one periplasmic and at least five secreted mannuronan C-5-epimerases. The secreted enzymes are composed of repeats of two protein modules designated A (385 amino acids) and R (153 amino acids). The modular structure of one of the epimerases, AlgE1, is A1R1R2R3A2R4. This enzyme has two catalytic sites for epimerization, each site introducing a different G distribution pattern, and in this article we report the DNA-level construction of a variety of truncated forms of the enzyme. Analyses of the properties of the corresponding proteins showed that an A module alone is sufficient for epimerization and that A1 catalyzed the formation of contiguous stretches of G residues in the polymer, while A2 introduces single G residues. These differences are predicted to strongly affect the physical and immunological properties of the reaction product. The epimerization reaction is Ca2+ dependent, and direct binding studies showed that both the A and R modules bind this cation. The R modules appeared to reduce the Ca2+ concentration needed for full activity and also stimulated the reaction rate when positioned both N and C terminally.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号