首页 | 本学科首页   官方微博 | 高级检索  
     


Differences in structure and stability between normal and deuterated proteins (phycocyanin)
Authors:Chang-Hwei Chen  I-Wen Liu  Robert MacColl  Donald S. Berns
Abstract:Differential scanning microcalorimetry was used to investigate the enthalpy (ΔHd) and the temperature (td) of thermal denaturation of normal and deuterated phycocyanins isolated from two blue-green algae, Plectonema calothricoides and Phormidium luridum. Values of td in deuterated proteins are about 5°C lower than those in normal proteins. The magnitudes of ΔHd in deuterated proteins are 18–36% lower than in normal proteins. The heatcapacity change (ΔCp) in protein unfolding is essentially the same (2 kcal/mol/K) for deuterated and normal proteins within the experimental error. At close to physiological temperature (27°C), the differences in thermodynamic functions in the native and denatured states are much higher in normal proteins than in deuterated proteins. CD was employed to evaluate both the secondary structures and urea denaturation of these two types of proteins. In P. luridum, deuterated protein is about 8% higher in α-helix content; in P. calothricoides it is not significantly higher. Deuterated proteins are less resistant to the denaturant urea than are normal proteins: the denaturant concentration at the midpoint of the denaturation curve is 0.6–1.2 mol/L lower in the deuterated proteins. The apparent free energies of unfolding of deuterated proteins at zero denaturant concentration are 1.1–1.5 kcal/mol less than for normal proteins.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号