首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cell turnover in the vomeronasal epithelium: evidence for differential migration and maturation of subclasses of vomeronasal neurons in the adult opossum
Authors:Martínez-Marcos A  Ubeda-Bañón I  Halpern M
Institution:Department of Anatomy and Cell Biology, Health Science Center at Brooklyn, State University of New York, 450 Clarkson Avenue, Brooklyn, New York 11203, USA.
Abstract:Previous investigations of cell turnover in the mammalian vomeronasal sensory epithelium (VN-SE) raised two issues. First, if, in addition to the already demonstrated vertical migration, horizontal migration from the edges of the VN-SE participates in neuronal replacement. Second, whether or not migration and maturation is differential in upper and lower populations of vomeronasal neurons, since these two cell populations are chemically, physiologically, functionally, and perhaps evolutionarily different. By injecting bromodeoxyuridine (BrdU) into adult opossum (Monodelphis domestica) and permitting different survival times, the pattern of distribution of BrdU-labeled cells was analyzed. No evidence of horizontal migration in neuronal replacement was found. To investigate vertical migration and maturation of subclasses of vomeronasal neurons, double immunohistochemistry of BrdU and markers of the lower (G(oalpha) protein) and upper G(i2alpha) protein and olfactory marker protein (OMP)] cell populations were performed. Three days after administration of BrdU, some mature neurons were observed in both lower and upper layers of the VN-SE, as demonstrated by coexpression of BrdU with G(oalpha) protein and OMP, respectively. The data on vertical distribution, however, indicate that most of the daughter cells enter the G(oalpha)-protein-expressing zone of the VN-SE by day 5, whereas most daughter cells do not reach the G(i2alpha)-protein-expressing zone until day 7, suggesting that these two populations mature at slightly different rates. These results are the first evidence of differential neurogenesis of subclasses of vomeronasal neurons.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号