首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Luteinizing hormone secretion as affected by hypophyseal stalk transection and estradiol-17beta in ovariectomized gilts
Authors:Ford J J  Berardinelli J G  Christenson R K  Anderson L L
Institution:USDA, ARS, Roman L. Hruska US Meat Animal Research Center, Agricultural Research Service, Clay Center, NE 68933, USA.
Abstract:The objectives were to determine hypothalamic regulation of pulsatile luteinizing hormone (LH) secretion in female pigs and the biphasic feedback actions of estradiol-17beta (E(2)-17beta). In the first study, the minimum effective dosage of E(2)-17beta that would induce estrus in ovariectomized gilts was determined to be 20microg/kg body weight. In the second study, ovariectomized gilts were assigned randomly on day 0 to treatments: (a) hypophyseal stalk transection (HST), (b) cranial sham-operated control (SOC), and (c) unoperated control (UOC). On day 3, gilts from each group received a single i.m. injection of either E(2)-17beta (20microg/kg body weight) or sesame oil. Blood was collected from an indwelling jugular cannula at 15min intervals for 3h before (day -2) and after treatment (day 2) from HST, SOC and UOC gilts. On day 3, blood was collected at 2h intervals for 12h after E(2)-17beta or sesame oil injection and at 4h intervals thereafter for 108h. Pulsatile LH secretion in all gilts 2 days after ovariectomy exhibited a frequency of 0.9+/-0.06peaks/h, amplitude of 1.3+/-0.13ng/ml, baseline of 0.8+/-0.07. Serum LH concentrations from SOC and UOC gilts were similar on day 2 and profiles did not differ from those on day -2. In HST gilts pulsatile LH release was abolished and mean LH concentration decreased compared with controls (0 versus 0.9+/-0. 06peaks/h and 0.77+/-0.03 versus 1.07+/-0.07ng/ml, respectively; P<0. 05). E(2)-17beta or sesame oil did not affect serum LH concentration in HST gilts, and LH remained constant throughout 120h (0.7+/-0. 07ng/ml). In SOC and UOC control gilts, E(2)-17beta induced a 60% decrease (P<0.05) in LH concentration within 12h, and LH remained low until 48h, then increased to peak values (P<0.05) by 72h, followed by a gradual decline to 120h. Although pituitary weight decreased 31% in HST gilts compared with controls (228 versus 332mg, P<0.05), an abundance of normal basophils was evident in coronal sections of the adenohypophysis of HST comparable to that seen in control gilts. The third and fourth studies determined that hourly i. v. infusions of LHRH (2microg) and a second injection of E(2)-17beta 48h after the first had no effect on the positive feedback action of estrogen in UOC. However, in HST gilts that received LHRH hourly, the first injection of E(2)-17beta decreased (P<0.05) plasma LH concentrations while the second injection of E(2)-17beta failed to induce a positive response to estrogen. These results indicate that both pulsatile LH secretion and the biphasic feedback action of E(2)-17beta on LH secretion depend on hypothalamic regulatory mechanisms in the gilts. The isolated pituitary of HST gilts is capable of autonomous secretion of LH; E(2)-17beta will elicit direct negative feedback action on the isolated pituitary gland if the gonadotropes are supported by exogenous LHRH, but E(2)-17beta at high concentrations will not induce positive feedback in isolated pituitaries. Thus, the direct effect of E(2)-17beta on the pituitary of monkeys cannot be mimicked in pigs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号