首页 | 本学科首页   官方微博 | 高级检索  
     


The Neuromediator Glutamate, through Specific Substrate Interactions, Enhances Mitochondrial ATP Production and Reactive Oxygen Species Generation in Nonsynaptic Brain Mitochondria
Authors:Alexander Panov   Peter Schonfeld   Sergey Dikalov   Richelle Hemendinger   Herbert L. Bonkovsky     Benjamin Rix Brooks
Affiliation:Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina 28203, the §Institute für Biochemie, Medizinische Fakultät, Otto-von-Guericke Universität Magdeburg, 39120 Magdeburg, Germany, and the Free Radicals in Medicine Core, Division of Cardiology, Emory University, Atlanta, Georgia 30322
Abstract:The finding that upon neuronal activation glutamate is transported postsynaptically from synaptic clefts and increased lactate availability for neurons suggest that brain mitochondria (BM) utilize a mixture of substrates, namely pyruvate, glutamate, and the tricarboxylic acid cycle metabolites. We studied how glutamate affected oxidative phosphorylation and reactive oxygen species (ROS) production in rat BM oxidizing pyruvate + malate or succinate. Simultaneous oxidation of glutamate + pyruvate + malate increased state 3 and uncoupled respiration by 52 and 71%, respectively. The state 4 ROS generation increased 100% over BM oxidizing pyruvate + malate and 900% over that of BM oxidizing glutamate + malate. Up to 70% of ROS generation was associated with reverse electron transport. These effects of pyruvate + glutamate + malate were observed only with BM and not with liver or heart mitochondria. The effects of glutamate + pyruvate on succinate-supported respiration and ROS generation were not organ-specific and depended only on whether mitochondria were isolated with or without bovine serum albumin. With the non-bovine serum albumin brain and heart mitochondria oxidizing succinate, the addition of pyruvate and glutamate abrogated inhibition of Complex II by oxaloacetate. We conclude that (i) during neuronal activation, simultaneous oxidation of glutamate + pyruvate temporarily enhances neuronal mitochondrial ATP production, and (ii) intrinsic inhibition of Complex II by oxaloacetate is an inherent mechanism that protects against ROS generation during reverse electron transport.Recently, it has emerged that mitochondrial dysfunctions play an important role in the pathogenesis of degenerative diseases of the central nervous system (13). The processes underlying neuronal degeneration are complex, and some authors suggest that several genetic alterations are involved (4). However, another level of complexity may be derived from the fact that virtually all cellular activities depend upon energy metabolism in the cell (5). Alterations in energy metabolism processes within cells may also contribute to pathogenic mechanisms underlying neurodegenerative disease.A large body of evidence suggests that increased oxidative stress is an important pathogenic mechanism that promotes neurodegeneration (6). Because neurons have a long life span, and most neurodegenerative diseases have a clear association with age (7), it is important to understand mechanisms underlying reactive oxygen species (ROS)2 production in neurons. Recently, Kudin et al. (8) analyzed the contribution of mitochondria to the total ROS production in brain tissue. They concluded that mitochondria are the major source of ROS and that at least 50% of ROS generated by brain mitochondria was associated with succinate-supported reverse electron transport (RET). Under conditions of normoxia, about 1% of the respiratory chain electron flow was redirected to form superoxide (8).Recently, we suggested that the organization of the respiratory chain complexes into supercomplexes that occurs in brain mitochondria (BM) (9) may represent one of the intrinsic mechanisms to prevent excessive ROS generation (10). In this paper, we put forward the hypothesis that inhibition of Complex II by oxaloacetate (OAA) represents another important intrinsic mechanism to prevent oxidative stress. We provide evidence that glutamate and pyruvate specifically exert control over the production of ROS at the level of Complex II. Below we present a brief account of published theoretical and experimental evidence that underlie our hypothesis.The neural processing of information is metabolically expensive (11). More than 80% of energy is spent postsynaptically to restore the ionic composition of neurons (11). When neurons are activated, reuptake of glutamate stimulates aerobic glycolysis in astroglial cells (12), thereby making lactate the major substrate for neuronal mitochondria (4, 13). However, rapid conversion of lactate to pyruvate in neurons requires activation of the malate-aspartate shuttle (MAS). The shuttle is the major pathway for cytosolic reducing equivalents from NADH to enter the mitochondria and be oxidized (14, 15). The key component of MAS is the mitochondrial aspartate/glutamate carrier (AGC) (16), and recent data suggest that the AGC is expressed mainly in neurons (14). Absence of the AGC from astrocytes in the brain implies a compartmentation of intermediary metabolism, with glycolysis taking place in astrocytes and lactate oxidation in neurons (13, 14, 17). Active operation of MAS requires that a certain amount of glutamate must be transported from synaptic clefts into activated neurons. In isolated BM, it has been shown that besides pyruvate, glutamate is also a good respiratory substrate (5, 18). In the presynaptic elements, the concentration of cytosolic glutamate is ∼10 mm at all times (19). Yudkoff et al. (18) have shown that synaptosomal mitochondria utilize glutamate and pyruvate as mitochondrial respiratory substrates. Glutamate is also oxidized by the astroglial mitochondria (13).Until recently, it was generally accepted that most of the glutamate is rapidly removed from the synaptic cleft by glutamate transporters EAAT1 and EAAT2 located on presynaptic termini and glial cells (2024). However, recent data show that a significant fraction of glutamate is rapidly bound and transported by the glutamate transporter isoform, EAAT4, located juxtasynaptically in the membranes of spines and dendrites (20, 2528). At the climbing fiber to Purkinje cell synapses in the cerebellum, about 17% (28) or more than 50% (29) of synaptically released glutamate may be removed by postsynaptic transporters. Besides the cerebellum, EAAT4 protein was found to be omnipresent throughout the fore- and midbrain regions (30). Moreover, it was shown that although most of the EAAT2 protein is astroglial, around 15% is distributed in nerve terminals and axons in hippocampal slices and that this protein may be responsible for more than half of the total uptake of glutamate from synaptic clefts (24). These data suggest that postsynaptic transport of glutamate into nerve terminals where mitochondria are located (31) may occur in all brain regions. According to calculations of Brasnjo and Otis (28), in a single synapse, EAAT4 (excitatory amino acid transporter 4) binds and transports postsynaptically about 1.3 ± 0.1 × 106 glutamate molecules. In the brain, on average, 1 mm3 of tissue contains 1 × 108 synapses (32, 33). Because of the high density of synaptic contacts, the neuronal cells may be exposed to mediators released from hundreds of firing synapses. Thus, in a narrow space of spines and dendrites, several million glutamate molecules postsynaptically transported from synaptic boutons may create local cytosolic concentration of glutamate in the low millimolar range. Consequently, neuronal mitochondria, particularly those located at the axonal or dendritic synaptic junctions, may, in addition to metabolizing pyruvate, temporarily metabolize glutamate and succinate formed during mitochondrial catabolism of γ-aminobutyric acid in postsynaptic cells (34).The purpose of this study was to examine how the neuromediator glutamate affects respiratory activity and ROS generation in nonsynaptic BM when combined with pyruvate and the tricarboxylic acid cycle intermediates succinate and malate. We show that with pyruvate + glutamate + malate, the rate of oxidative phosphorylation increased more than 50%, and in resting mitochondria the rate of ROS generation associated with the reverse electron transport increased severalfold. These effects were observed only with brain and spinal cord mitochondria, not with liver or heart mitochondria, suggesting that they may be restricted to neuronal cells.Taken together, the data presented support the hypothesis that in activated neurons, the neuromediator glutamate stimulates mitochondrial ATP production when energy demand is increased. However, in the absence of energy consumption, glutamate + pyruvate may increase the generation of ROS severalfold. We suggest that intrinsic inhibition of Complex II by oxaloacetate is an important natural protective mechanism against ROS associated with reverse electron transport.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号