首页 | 本学科首页   官方微博 | 高级检索  
     


Familial FTDP-17 Missense Mutations Inhibit Microtubule Assembly-promoting Activity of Tau by Increasing Phosphorylation at Ser202 in Vitro
Authors:Dong Han   Hamid Y. Qureshi   Yifan Lu     Hemant K. Paudel
Affiliation:Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, and the §Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3T 1E2, Canada
Abstract:In Alzheimer disease (AD), frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) and other tauopathies, tau accumulates and forms paired helical filaments (PHFs) in the brain. Tau isolated from PHFs is phosphorylated at a number of sites, migrates as ∼60-, 64-, and 68-kDa bands on SDS-gel, and does not promote microtubule assembly. Upon dephosphorylation, the PHF-tau migrates as ∼50–60-kDa bands on SDS-gels in a manner similar to tau that is isolated from normal brain and promotes microtubule assembly. The site(s) that inhibits microtubule assembly-promoting activity when phosphorylated in the diseased brain is not known. In this study, when tau was phosphorylated by Cdk5 in vitro, its mobility shifted from ∼60-kDa bands to ∼64- and 68-kDa bands in a time-dependent manner. This mobility shift correlated with phosphorylation at Ser202, and Ser202 phosphorylation inhibited tau microtubule-assembly promoting activity. When several tau point mutants were analyzed, G272V, P301L, V337M, and R406W mutations associated with FTDP-17, but not nonspecific mutations S214A and S262A, promoted Ser202 phosphorylation and mobility shift to a ∼68-kDa band. Furthermore, Ser202 phosphorylation inhibited the microtubule assembly-promoting activity of FTDP-17 mutants more than of WT. Our data indicate that FTDP-17 missense mutations, by promoting phosphorylation at Ser202, inhibit the microtubule assembly-promoting activity of tau in vitro, suggesting that Ser202 phosphorylation plays a major role in the development of NFT pathology in AD and related tauopathies.Neurofibrillary tangles (NFTs)4 and senile plaques are the two characteristic neuropathological lesions found in the brains of patients suffering from Alzheimer disease (AD). The major fibrous component of NFTs are paired helical filaments (PHFs) (for reviews see Refs. 13). Initially, PHFs were found to be composed of a protein component referred to as “A68” (4). Biochemical analysis reveled that A68 is identical to the microtubule-associated protein, tau (4, 5). Some characteristic features of tau isolated from PHFs (PHF-tau) are that it is abnormally hyperphosphorylated (phosphorylated on more sites than the normal brain tau), does not bind to microtubules, and does not promote microtubule assembly in vitro. Upon dephosphorylation, PHF-tau regains its ability to bind to and promote microtubule assembly (6, 7). Tau hyperphosphorylation is suggested to cause microtubule instability and PHF formation, leading to NFT pathology in the brain (13).PHF-tau is phosphorylated on at least 21 proline-directed and non-proline-directed sites (8, 9). The individual contribution of these sites in converting tau to PHFs is not entirely clear. However, some sites are only partially phosphorylated in PHFs (8), whereas phosphorylation on specific sites inhibits the microtubule assembly-promoting activity of tau (6, 10). These observations suggest that phosphorylation on a few sites may be responsible and sufficient for causing tau dysfunction in AD.Tau purified from the human brain migrates as ∼50–60-kDa bands on SDS-gel due to the presence of six isoforms that are phosphorylated to different extents (2). PHF-tau isolated from AD brain, on the other hand, displays ∼60-, 64-, and 68 kDa-bands on an SDS-gel (4, 5, 11). Studies have shown that ∼64- and 68-kDa tau bands (the authors have described the ∼68-kDa tau band as an ∼69-kDa band in these studies) are present only in brain areas affected by NFT degeneration (12, 13). Their amount is correlated with the NFT densities at the affected brain regions. Moreover, the increase in the amount of ∼64- and 68-kDa band tau in the brain correlated with a decline in the intellectual status of the patient. The ∼64- and 68-kDa tau bands were suggested to be the pathological marker of AD (12, 13). Biochemical analyses determined that ∼64- and 68-kDa bands are hyperphosphorylated tau, which upon dephosphorylation, migrated as normal tau on SDS-gel (4, 5, 11). Tau sites involved in the tau mobility shift to ∼64- and 68-kDa bands were suggested to have a role in AD pathology (12, 13). It is not known whether phosphorylation at all 21 PHF-sites is required for the tau mobility shift in AD. However, in vitro the tau mobility shift on SDS-gel is sensitive to phosphorylation only on some sites (6, 14). It is therefore possible that in the AD brain, phosphorylation on some sites also causes a tau mobility shift. Identification of such sites will significantly enhance our knowledge of how NFT pathology develops in the brain.PHFs are also the major component of NFTs found in the brains of patients suffering from a group of neurodegenerative disorders collectively called tauopathies (2, 11). These disorders include frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17), corticobasal degeneration, progressive supranuclear palsy, and Pick disease. Each PHF-tau isolated from autopsied brains of patients suffering from various tauopathies is hyperphosphorylated, displays ∼60-, 64-, and 68-kDa bands on SDS-gel, and is incapable of binding to microtubules. Upon dephosphorylation, the above referenced PHF-tau migrates as a normal tau on SDS-gel, binds to microtubules, and promotes microtubule assembly (2, 11). These observations suggest that the mechanisms of NFT pathology in various tauopathies may be similar and the phosphorylation-dependent mobility shift of tau on SDS-gel may be an indicator of the disease. The tau gene is mutated in familial FTDP-17, and these mutations accelerate NFT pathology in the brain (1518). Understanding how FTDP-17 mutations promote tau phosphorylation can provide a better understanding of how NFT pathology develops in AD and various tauopathies. However, when expressed in CHO cells, G272V, R406W, V337M, and P301L tau mutations reduce tau phosphorylation (19, 20). In COS cells, although G272V, P301L, and V337M mutations do not show any significant affect, the R406W mutation caused a reduction in tau phosphorylation (21, 22). When expressed in SH-SY5Y cells subsequently differentiated into neurons, the R406W, P301L, and V337M mutations reduce tau phosphorylation (23). In contrast, in hippocampal neurons, R406W increases tau phosphorylation (24). When phosphorylated by recombinant GSK3β in vitro, the P301L and V337M mutations do not have any effect, and the R406W mutation inhibits phosphorylation (25). However, when incubated with rat brain extract, all of the G272V, P301L, V337M, and R406W mutations stimulate tau phosphorylation (26). The mechanism by which FTDP-17 mutations promote tau phosphorylation leading to development of NFT pathology has remained unclear.Cyclin-dependent protein kinase 5 (Cdk5) is one of the major kinases that phosphorylates tau in the brain (27, 28). In this study, to determine how FTDP-17 missense mutations affect tau phosphorylation, we phosphorylated four FTDP-17 tau mutants (G272V, P301L, V337M, and R406W) by Cdk5. We have found that phosphorylation of tau by Cdk5 causes a tau mobility shift to ∼64- and 68 kDa-bands. Although the mobility shift to a ∼64-kDa band is achieved by phosphorylation at Ser396/404 or Ser202, the mobility shift to a 68-kDa band occurs only in response to phosphorylation at Ser202. We show that in vitro, FTDP-17 missense mutations, by promoting phosphorylation at Ser202, enhance the mobility shift to ∼64- and 68-kDa bands and inhibit the microtubule assembly-promoting activity of tau. Our data suggest that Ser202 phosphorylation is the major event leading to NFT pathology in AD and related tauopathies.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号