A Unified Scheme for Initiation and Conformational Adaptation of Human
Apolipoprotein E N-terminal Domain upon Lipoprotein Binding and for Receptor
Binding
Activity |
| |
Authors: | Arun Sivashanmugam and Jianjun Wang |
| |
Affiliation: | Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, Michigan 48201 |
| |
Abstract: | We report here a high-resolution NMR structure of the complete receptor-binding domain of human apolipoprotein E3 (apoE3-NT). Similar to the crystal structure of apoE-NT, the NMR structure displayed an elongated four-helix bundle. However, additional unique structural features were also observed. The segments in the N and C termini, which were missing in the crystal structure, formed α-helices having extensive tertiary contacts with the bundle, which oriented these short helices at specific positions for receptor binding activity. Several buried hydrophilic residues observed in the bundle were located strategically between helices 1 and 2 and between helices 3 and 4, significantly destabilizing these helix-helix interfaces. In addition, these buried hydrophilic residues formed buried H-bonds, which may play a key role in specific lipid-free helix bundle recovery. A short helix, nHelix C, was fully solvent-exposed and nearly perpendicular to the bundle. This short helix likely plays a critical role in initiating protein-lipid interaction, causing a preferred conformational adaptation of the bundle at the weaker helix-helix interfaces. This produces an open conformation with two lobes of helices, helices 1 and 4 and helices 2 and 3, which may be the competent conformation for receptor binding activity. Thus, the NMR structure suggests a unified scheme for the initiation and helix bundle opening of apoE-NT upon lipoprotein-binding and for receptor binding activity.Human apolipoprotein E (apoE)2 is a 299-residue plasma-exchangeable apolipoprotein with the primary function of transporting lipids from one tissue to another. ApoE performs its functions via interactions with the low-density lipoprotein receptor (LDLR) superfamily (1). The high affinity binding of apoE to the receptors allows apoE-associated lipoprotein particles to be targeted for endocytosis and intracellular degradation. As a subclass of high-density lipoprotein, apoE also influences both cholesterol efflux and influx, thus playing an important role in reverse cholesterol transport (2, 3). Three major isoforms of apoE have been identified: ApoE3 has a cysteine at position 112 and an arginine at position 158, whereas apoE2 has cysteines and apoE4 has arginines at both positions. Although these isoforms differ in only two residues, they show profound functional differences. Recent evidence indicates that apoE is also critical in several other important biological processes, including Alzheimer disease, cognitive functioning, immunoregulation, cell signaling, and infectious diseases (4).ApoE is a two-domain protein that contains a 22-kDa N-terminal domain (residues 1-191) and a 10-kDa C-terminal domain (residues 216-299) linked by a protease sensitive hinge region. Although the N-terminal domain of apoE (apoE-NT) is primarily responsible for LDL-receptor binding, the C-terminal domain (apoE-CT) binds to lipoprotein with a high affinity (1). The x-ray crystal structure of lipid-free apoE-NT reveals a globular up-and-down four-helix bundle (5). The major receptor-binding region, residues 130-150, is located on the fourth helix. The positively charged residues (Lys and Arg) in this region are critical for interacting with the negatively charged residues in the receptor (1, 6). This structure only contains residues 24-164, whereas the rest of the regions are disordered. However, experimental evidence indicates that regions beyond residues 24-164 are also critical for LDLR binding activity. For example, deletion of residues 167-185 reduces the apoE3 LDLR binding activity to 15%, and a mutation at position Arg-172 reduces the LDLR binding activity to only ∼2% (7). In addition, an E3K mutant of apoE3 enhances the LDLR binding activity by 2-fold (8). Although the x-ray crystal structure of apoE-NT provides a structural explanation of the major receptor-binding domain of apoE, this structure does not explain the above described important experimental data. Thus, our understanding of the structural basis of the receptor binding activity of apoE remains incomplete.Previous studies using truncation mutants have shown that apoE(1-183) displays nearly 100% LDLR binding activity (9), suggesting that residues beyond position 183 are not important in LDLR binding. We report here a high-resolution NMR structure of the complete LDLR-binding domain of apoE3. Interestingly, our NMR structure shows that the N and C termini form α-helical structures that have extensive contacts with the helix bundle, orienting the two termini at specific positions for potential receptor binding. The NMR structure also displays several novel structural features that may provide the structural basis of a unified scheme for initiation and conformational adaptation of apoE-NT upon lipoprotein binding. |
| |
Keywords: | |
|
|