首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Flight metabolism in carpenter bees and primary structure of their hypertrehalosaemic peptide
Authors:Gerd Gäde and Lutz Auerswald
Institution:(1) Zoology Department, University of Cape Town, Rondebosch, 7701, South Africa
Abstract:We measured the rate of oxygen consumption and carbon dioxide production as well as energy substrates in haemolymph and flight muscles of carpenter bees of the genus Xylocopa at rest and after tethered lift-generating flight. Flight of 2 min duration at an ambient temperature of 28○C elevated oxygen consumption about 70-fold above resting rate. The respiratory quotient during rest and flight was 1 indicating that carbohydrates were the exclusive substrate oxidised. This was corroborated by measurements of metabolism. Carbohydrates are in high concentrations in the haemolymph. This store was significantly diminished during a 10-min flight period. Whereas lipids did not contribute to energy provisions, the proline concentration in the haemolymph and in the flight muscles was significantly decreased upon flight, but the amount can only account for a very small contribution to overall flight metabolism. Polysaccharide reserves in flight muscles and whole abdomina are almost non-existent. However, earlier studies had identified the crop as a source of oligosaccharides (Louw and Nicolson 1983). Carbohydrate metabolism is influenced by a metabolic peptide from the corpus cardiacum. We could isolate a peptide from the corpora cardiaca of carpenter bees, which by retention time in HPLC and by its mass is very likely characterised as the octapeptide Scg-AKH-II (pGlu-Leu-Asn-Phe- Ser-Thr-Gly-Trp-NH2) previously shown to occur in certain Orthoptera. This is the first member of the large AKH/RPCH family of peptides to be identified from a hymenopteran species. Injection of the synthetic peptide into adult carpenter bees caused carbohydrate mobilisation. We suggest that the peptide targets the high sugar stores in the crop and speculate that it may facilitate sugar passage rate through the digestive system.Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.
Keywords:AKH/RPCH  Carpenter bee  Energy metabolism  Insect flight  Neuropeptide  Xylocopa
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号