首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Prediction of a protein band profile in preparative reversed-phase gradient elution chromatography
Authors:El Fallah M Z  Guiochon G
Institution:Department of Chemistry, The University to Tennessee, Knoxville, Tennessee 37996-1600 and Division of Analytical Chemistry, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6120.
Abstract:The overloaded band profiles of lysozyme in reversedphase preparative chromatography were recorded on a C18 chemically bonded silica column, with acetonitrile/water as the mobile phase. These experiments were carried out under isocratic conditions at 31.6, 31.9, and 32.2% acetonitrile (ACN) for loading factors up to 43% of the column saturation capacity and under linear-solvent-strength gradientelution with gradient slopes of 0.5 and 1% ACN/min, for loading factors up to 11.3%. The adsorption isotherms of lysozyme were measured for the same solvent compositions and found to be accurately accounted for by a bi-Langmuir isotherm model.With the use of a Craig model implementation of the equilibrium-dispersive model of chromatography, the band profiles of lysozyme were calculated. An excellent agreement was observed between these calculated profiles and the experimental profiles recorded at loading factors below 5%. By contrast, band profiles calculated using a Langmuir isotherm failed to describe the experimental bands. At column loadings exceeding 8%, a slight but systematic deviation takes place between calculated and experimental profiles. It is most probably explained by the considerable concentration effect of the gradient, making the band experience phase equilibrium in a concentration range that exceeds largely the one where the isotherm data have been measured.
Keywords:adsorption  chromatography  gradient-elution  isotherms  proteins
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号