首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Division of cell nuclei, mitochondria, plastids, and microbodies mediated by mitotic spindle poles in the primitive red alga Cyanidioschyzon merolae
Authors:Yuuta Imoto  Takayuki Fujiwara  Yamato Yoshida  Haruko Kuroiwa  Shinichiro Maruyama  Tsuneyoshi Kuroiwa
Institution:1. Laboratory of Cell Biology, Department of Life Science, College of Science, Research Information Center for Extremophile, Rikkyo University, Toshima, Tokyo, 171-8501, Japan
2. Institute of Molecular and Cellular Bioscience, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-0032, Japan
Abstract:To understand the cell cycle, we must understand not only mitotic division but also organelle division cycles. Plant and animal cells contain many organelles which divide randomly; therefore, it has been difficult to elucidate these organelle division cycles. We used the primitive red alga Cyanidioschyzon merolae, as it contains a single mitochondrion and plastid per cell, and organelle division can be highly synchronized by a light/dark cycle. We demonstrated that mitochondria and plastids multiplied by independent division cycles (organelle G1, S, G2 and M phases) and organelle division occurred before cell–nuclear division. Additionally, organelle division was found to be dependent on microtubules as well as cell–nuclear division. We have observed five stages of microtubule dynamics: (1) the microtubule disappears during the G1 phase; (2) α-tubulin is dispersed within the cytoplasm without forming microtubules during the S phase; (3) α-tubulin is assembled into spindle poles during the G2 phase; (4) polar microtubules are organized along the mitochondrion during prophase; and (5) mitotic spindles in cell nuclei are organized during the M phase. Microfluorometry demonstrated that the intensity peak of localization of α-tubulin changed in the order to spindle poles, mitochondria, spindle poles, and central spindle area, but total fluorescent intensity did not change remarkably throughout mitotic phases suggesting that division and separation of the cell nucleus and mitochondrion is mediated by spindle pole bodies. Inhibition of microtubule organization induced cell–nuclear division, mitochondria separation, and division of a single membrane-bound microbody, suggesting that similar to cell–nuclear division, mitochondrion separation and microbody division are dependent on microtubules.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号