首页 | 本学科首页   官方微博 | 高级检索  
     


Branch Roots of Zea. V. Structural Features that may Influence Water and Nutrient Transport
Authors:X. L. Wang  M. E. McCully  M. J. Canny
Abstract:First-order branch roots of field-grown Zea mays L. were examined by optical and electron microscopy. They were small-scale versions of nodal roots except for the usual retention of a live epidermis throughout their length. The Casparian strips and suberized lamellae of hypodermis and endodermis developed closer to the root tip than reported for main roots (in the zone 0.5 to 5.5 cm from the tip for the hypodermis, and 0.5 to 4 cm for the endodermis), in branches retaining an apical meristem. The hydrophobic deposits were in place to the distal ends of determinate branches. All hydrophobic deposits were fully formed before the late metaxylem elements were mature. Gaps in the suberized lamellae of both hypodermis and endodermis may permit apoplastic diffusion of solutes through these layers. Pit frequency in the outer tangential walls of the hypodermis and endodermis was 0.3 per 100 μm2, and 0.6 to 0.7 per 100 μm2, respectively, in both branch and main roots. Numbers of plasmodesmata per pit in the branches were 60 and 30 in the hypodermis and endodermis, respectively. Water fluxes from published data were used to calculated the possible flux through plasmodesmata on a symplastic path. Values up to 0.2 pl h?1 for the hypodermis and twice this for the endodermis were obtained.
Keywords:Branch roots  Casparian strips  plasmodesmata  pits  suberized lamellae
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号