首页 | 本学科首页   官方微博 | 高级检索  
     


High temperature stress and spikelet fertility in rice (Oryza sativa L.)
Authors:Jagadish S V K  Craufurd P Q  Wheeler T R
Affiliation:Plant Environment Laboratory, University of Reading, Cutbush Lane, Shinfield, Reading RG2 9AF, UK.
Abstract:In future climates, greater heat tolerance at anthesis will be required in rice. The effect of high temperature at anthesis on spikelet fertility was studied on IR64 (lowland indica) and Azucena (upland japonica) at 29.6 degrees C (control), 33.7 degrees C, and 36.2 degrees C tissue temperatures. The objectives of the study were to: (i) determine the effect of temperature on flowering pattern; (ii) examine the effect of time of day of spikelet anthesis relative to a high temperature episode on spikelet fertility; and (iii) study the interactions between duration of exposure and temperature on spikelet fertility. Plants were grown at 30/24 degrees C day/night temperature in a greenhouse and transferred to growth cabinets for the temperature treatments. Individual spikelets were marked with paint to relate fertility to the time of exposure to different temperatures and durations. In both genotypes the pattern of flowering was similar, and peak anthesis occurred between 10.30 h and 11.30 h at 29.2 degrees C, and about 45 min earlier at 36.2 degrees C. In IR64, high temperature increased the number of spikelets reaching anthesis, whereas in Azucena numbers were reduced. In both genotypesor=33.7 degrees C at anthesis caused sterility. In IR64, there was no interaction between temperature and duration of exposure, and spikelet fertility was reduced by about 7% per degrees C>29.6 degrees C. In Azucena there was a significant interaction and spikelet fertility was reduced by 2.4% degrees Cd-1 above a threshold of 33 degrees C. Marking individual spikelets is an effective method to phenotype genotypes and lines for heat tolerance that removes any apparent tolerance due to temporal escape.
Keywords:
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号