首页 | 本学科首页   官方微博 | 高级检索  
     


Identification of a glycine motif required for packing in EmrE, a multidrug transporter from Escherichia coli
Authors:Elbaz Yael  Salomon Tal  Schuldiner Shimon
Affiliation:Department of Biological Chemistry, Alexander A. Silberman Institute of Life Sciences, Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
Abstract:Glycine residues may play functional and structural roles in membrane proteins. In this work we studied the role of glycine residues in EmrE, a small multidrug transporter from Escherichia coli. EmrE extrudes various drugs across the plasma membrane in exchange with protons and, as a result, confers resistance against their toxic effects. Each of 12 glycine residues was replaced by site-directed mutagenesis. Four of the 12 glycine residues in EmrE are evolutionary conserved within the small multidrug resistance family of multidrug transporters. Our analysis reveals that only two (Gly-67 and Gly-97) of these four highly conserved residues are essential for transporter activity. Moreover, two glycine positions that are less conserved, Gly-17 and Gly-90, demonstrate also a nil phenotype when substituted. Our present results identifying Gly-17 and Gly-67 as irreplaceable reinforce the importance of previously defined functional clusters. Two essential glycine residues, Gly-90 and Gly-97, form a protein motif in which glycine residues are separated by six other residues (GG7). Upon substitution of glycine in these positions, the protein ability to form dimers is impaired as evaluated by cross-linking and pull-down experiments.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号