首页 | 本学科首页   官方微博 | 高级检索  
     


Physiochemical characterization of the Alzheimer's disease-related peptides A beta 1-42Arctic and A beta 1-42wt
Authors:Johansson Ann-Sofi  Berglind-Dehlin Fredrik  Karlsson Göran  Edwards Katarina  Gellerfors Pär  Lannfelt Lars
Affiliation:Department of Public Health and Caring Sciences, Uppsala University, Rudbeck Laboratory, Sweden. ann-sofi.johansson@pubcare.uu.se
Abstract:The amyloid beta peptide (A beta) is crucial for the pathogenesis of Alzheimer's disease. Aggregation of monomeric A beta into insoluble amyloid fibrils proceeds through several soluble A beta intermediates, including protofibrils, which are believed to be central in the disease process. The main reason for this is their implication in familial Alzheimer's disease with the Arctic amyloid precursor protein mutation (E693G). This mutation gives rise to early onset Alzheimer's disease, and synthetic A beta 1-40Arctic displays an enhanced rate of protofibril formation in vitro[Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, Stenh C, Luthman J, Teplow DB, Younkin SG, Naslund J & Lannfelt L. (2001) Nat Neurosci4, 887-893]. To increase our understanding of the mechanisms involved in A beta aggregation, especially A beta monomer oligomerization into protofibrils and protofibril fibrillization into fibrils, the kinetics of A beta 1-42wt and A beta 1-42Arctic aggregation were examined under different physiochemical conditions, such as concentration, temperature, ionic strength and pH. We used size exclusion chromatography for this purpose, where monomers are separated from protofibrils, and fibrils are separated from protofibrils in a centrifugation step. The Arctic mutation significantly accelerated both A beta 1-42wt protofibril formation and protofibril fibrillization. In addition, we demonstrated that two distinct chemical processes - monomer oligomerization and protofibril fibrillization - were affected differently by changes in the micro-environment and that the Arctic mutation alters the peptide response to such changes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号