首页 | 本学科首页   官方微博 | 高级检索  
     


Rapid parasite adaptation drives selection for high recombination rates
Authors:Salathé Marcel  Kouyos Roger D  Regoes Roland R  Bonhoeffer Sebastian
Affiliation:Theoretical Biology, Institute of Integrative Biology, ETH Zürich, ETH-Zentrum CHN, 8092 Zürich, Switzerland. marcel.salathe@env.ethz.ch
Abstract:The Red Queen hypothesis proposes that sex is maintained through selection pressure imposed by coevolving parasites: susceptible hosts are able to escape parasite pressure by recombining their genome to create resistant offspring. However, previous theoretical studies have shown that the Red Queen typically selects against sex unless selection is strong, arguing that high rates of recombination cannot evolve when parasites are of low virulence. Here we show that under the biologically plausible assumption of a severe fitness cost for parasites that fail to infect, the Red Queen can cause selection for high recombination rates, and that the strength of virulence is largely irrelevant to the direction of selection for increased recombination rates. Strong selection on parasites and short generation times make parasites usually better adapted to their hosts than vice versa and can thus favor higher recombination rates in hosts. By demonstrating the importance of host-imposed selection on parasites, our findings resolve previously reported conflicting results.
Keywords:Evolution of sex    host–pathogen coevolution    parasites    recombination    Red Queen
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号