首页 | 本学科首页   官方微博 | 高级检索  
     


A neural network algorithm for the multiple traveling salesmen problem
Authors:E. Wacholder  J. Han  R. C. Mann
Affiliation:(1) Oak Ridge National Laboratory, Building 6025, MS-6364, P.O. Box 2008, 37831-6364 Oak Ridge, TN, USA
Abstract:We developed an efficient neural network algorithm for solving the Multiple Traveling Salesmen Problem (MTSP). A new transformation of the N-city M-salesmen MTSP to the standard Traveling Salesmen Problem (TSP) is introduced. The transformed problem is represented by an expanded version of Hopfield-Tank's neuromorphic city-position map with (N + M-1)-cities and a single fictitious salesmen. The dynamic model associated with the problem is based on the Basic Differential Multiplier Method (BDMM) [26] which evaluates Lagrange multipliers simultaneously with the problem's state variables. The algorithm was successfully tested on many problems with up to 30 cities and five salesmen. In all test cases, the algorithm always converged to valid solutions. The great advantage of this kind of algorithm is that it can provide solutions to complex decision making problems directly by solving a system of ordinary differential equations. No learning steps, logical if statements or adjusting of parameters are required during the computation. The algorithm can therefore be implemented in hardware to solve complex constraint satisfaction problems such as the MTSP at the speed of analog silicon VLSI devices or possibly future optical neural computers.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号