首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Paint-assisted microdissection-FISH: Rapid and simple mapping of translocation breakpoints in the embryonal rhabdomyosarcoma cell line RD.
Authors:Ian Roberts  Nicola Foster  Elisabeth Nacheva  Nicholas Coleman
Institution:Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, Cambridge, United Kingdom. ir210@cam.ac.uk
Abstract:BACKGROUND: Spectral karyotyping and multiple fluorophore fluorescence in situ hybridisation (M-FISH) facilitate identification of inter-chromosomal rearrangements, but are of low cytogenetic resolution in mapping translocation breakpoints. Reverse chromosome painting yields increased cytogenetic information but isolation of aberrant chromosomes is technically difficult. We have developed the technique of paint-assisted microdissection FISH (PAM-FISH), which enables microdissection of aberrant chromosomes to be carried out easily and rapidly using relatively simple apparatus. METHODS: A selected chromosome paint is hybridised to abnormal metaphases to label a chromosome of interest, which is then microdissected, amplified, labelled by polymerase chain reaction (PCR), and reverse painted onto extended normal metaphases. RESULTS: PAM-FISH was used to reassess structural chromosomal abnormalities identified by molecular cytogenetics in the rhabdomyosarcoma cell line RD. PAM-FISH improved the analysis of virtually all structural abnormalities, identifying six novel translocations and indicating that seven previously described rearrangements were in fact not present in RD. Accuracy of the breakpoint mapping obtained was confirmed by bacterial artificial chromosome-FISH. CONCLUSIONS: PAM-FISH is ideally suited to analysis of tumour metaphases as it is not affected by poor chromosome morphology. Reagents generated by PAM-FISH are also suitable for other investigations, such as mapping using sequence tagged-site PCR or genomic microarrays. PAM-FISH is technically straightforward and could readily be adopted in a routine cytogenetics laboratory for accurate high-throughput analysis of chromosome breakpoints.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号