首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Variation in Adult Plant Phenotypes and Partitioning among Seed and Stem-Borne Roots across Brachypodium distachyon Accessions to Exploit in Breeding Cereals for Well-Watered and Drought Environments
Authors:Vincent Chochois  John P Vogel  Gregory J Rebetzke  Michelle Watt
Institution:Commonwealth Scientific and Industrial Research Organisation Agriculture Flagship, Canberra, Australian Capital Territory 2601, Australia (V.C., G.J.R., M.W.); and;United States Department of Energy Joint Genome Institute, Walnut Creek, California 94598 (J.P.V.)
Abstract:Seedling roots enable plant establishment. Their small phenotypes are measured routinely. Adult root systems are relevant to yield and efficiency, but phenotyping is challenging. Root length exceeds the volume of most pots. Field studies measure partial adult root systems through coring or use seedling roots as adult surrogates. Here, we phenotyped 79 diverse lines of the small grass model Brachypodium distachyon to adults in 50-cm-long tubes of soil with irrigation; a subset of 16 lines was droughted. Variation was large (total biomass, ×8; total root length TRL], ×10; and root mass ratio, ×6), repeatable, and attributable to genetic factors (heritabilities ranged from approximately 50% for root growth to 82% for partitioning phenotypes). Lines were dissected into seed-borne tissues (stem and primary seminal axile roots) and stem-borne tissues (tillers and coleoptile and leaf node axile roots) plus branch roots. All lines developed one seminal root that varied, with branch roots, from 31% to 90% of TRL in the well-watered condition. With drought, 100% of TRL was seminal, regardless of line because nodal roots were almost always inhibited in drying topsoil. Irrigation stimulated nodal roots depending on genotype. Shoot size and tillers correlated positively with roots with irrigation, but partitioning depended on genotype and was plastic with drought. Adult root systems of B. distachyon have genetic variation to exploit to increase cereal yields through genes associated with partitioning among roots and their responsiveness to irrigation. Whole-plant phenotypes could enhance gain for droughted environments because root and shoot traits are coselected.Adult plant root systems are relevant to the size and efficiency of seed yield. They supply water and nutrients for the plant to acquire biomass, which is positively correlated to the harvest index (allocation to seed grain), and the stages of flowering and grain development. Modeling in wheat (Triticum aestivum) suggested that an extra 10 mm of water absorbed by such adult root systems during grain filling resulted in an increase of approximately 500 kg grain ha−1 (Manschadi et al., 2006). This was 25% above the average annual yield of wheat in rain-fed environments of Australia. This number was remarkably close to experimental data obtained in the field in Australia (Kirkegaard et al., 2007). Together, these modeling and field experiments have shown that adult root systems are critical for water absorption and grain yield in cereals, such as wheat, emphasizing the importance of characterizing adult root systems to identify phenotypes for productivity improvements.Most root phenotypes, however, have been described for seedling roots. Seedling roots are essential for plant establishment, and hence, the plant’s potential to set seed. For technical reasons, seedlings are more often screened than adult plants because of the ease of handling smaller plants and the high throughput. Seedling-stage phenotyping may also improve overall reproducibility of results because often, growth media are soil free. Seedling soil-free root phenotyping conditions are well suited to dissecting fine and sensitive mechanisms, such as lateral root initiation (Casimiro et al., 2003; Péret et al., 2009a, 2009b). A number of genes underlying root processes have been identified or characterized using seedlings, notably with the dicotyledonous models Arabidopsis (Arabidopsis thaliana; Mouchel et al., 2004; Fitz Gerald et al., 2006; Yokawa et al., 2013) and Medicago truncatula (Laffont et al., 2010) and the cereals maize (Zea mays; Hochholdinger et al., 2001) and rice (Oryza sativa; Inukai et al., 2005; Kitomi et al., 2008).Extrapolation from seedling to adult root systems presents major questions (Hochholdinger and Zimmermann, 2008; Chochois et al., 2012; Rich and Watt, 2013). Are phenotypes in seedling roots present in adult roots given developmental events associated with aging? Is expression of phenotypes correlated in seedling and adult roots if time compounds effects of growth rates and growth conditions on roots? Watt et al. (2013) showed in wheat seedlings that root traits in the laboratory and field correlated positively but that neither correlated with adult root traits in the field. Factors between seedling and adult roots seemed to be differences in developmental stage and the time that growing roots experience the environment.Seedling and adult root differences may be larger in grasses than dicotyledons. Grass root systems have two developmental components: seed-borne (seminal) roots, of which a number emerge at germination and continue to grow and branch throughout the plant life, and stem-borne (nodal or adventitious) roots, which emerge from around the three-leaf stage and continue to emerge, grow, and branch throughout the plant life. Phenotypes and traits of adult root systems of grasses, which include the major cereal crops wheat, rice, and maize, are difficult to predict in seedling screens and ideally identified from adult root systems first (Gamuyao et al., 2012).Phenotyping of adult roots is possible in the field using trenches (Maeght et al., 2013) or coring (Wasson et al., 2014). A portion of the root system is captured with these methods. Alternatively, entire adult root systems can be contained within pots dug into the ground before sowing. These need to be large; field wheat roots, for example, can reach depths greater than 1.5 m depending on genotype and environment. This method prevents root-root interactions that occur under normal field sowing of a plant canopy and is also a compromise.A solution to the problem of phenotyping adult cereal root systems is a model for monocotyledon grasses: Brachypodium distachyon. B. distachyon is a small-stature grass with a small genome that is fully sequenced (Vogel et al., 2010). It has molecular tools equivalent to those available in Arabidopsis (Draper et al., 2001; Brkljacic et al., 2011; Mur et al., 2011). The root system of B. distachyon reference line Bd21 is more similar to wheat than other model and crop grasses (Watt et al., 2009). It has a seed-borne primary seminal root (PSR) that emerges from the embryo at seed germination and multiple stem-borne coleoptile node axile roots (CNRs) and leaf node axile roots (LNRs), also known as crown roots or adventitious roots, that emerge at about three leaves through to grain development. Branch roots emerge from all root types. There are no known anatomical differences between root types of wheat and B. distachyon (Watt et al., 2009). In a recent study, we report postflowering root growth in B. distachyon line Bd21-3, showing that this model can be used to answer questions relevant to the adult root systems of grasses (Chochois et al., 2012).In this study, we used B. distachyon to identify adult plant phenotypes related to the partitioning among seed-borne and stem-borne shoots and roots for the genetic improvement of well-watered and droughted cereals (Fig. 1; Krassovsky, 1926; Navara et al., 1994), nitrogen, phosphorus (Tennant, 1976; Brady et al., 1995), oxygen (Wiengweera and Greenway, 2004), soil hardness (Acuna et al., 2007), and microorganisms (Sivasithamparam et al., 1978). Of note is the study by Krassovsky (1926), which was the first, to our knowledge, to show differences in function related to water. Krassovsky (1926) showed that seminal roots of wheat absorbed almost 2 times the water as nodal roots per unit dry weight but that nodal roots absorbed a more diluted nutrient solution than seminal roots. Krassovsky (1926) also showed by removing seminal or nodal roots as they emerged that “seminal roots serve the main stem, while nodal roots serve the tillers” (Krassovsky, 1926). Volkmar (1997) showed, more recently, in wheat that nodal and seminal roots may sense and respond to drought differently. In millet (Pennisetum glaucum) and sorghum (Sorghum bicolor), Rostamza et al. (2013) found that millet was able to grow nodal roots in a dryer soil than sorghum, possibly because of shoot and root vigor.Open in a separate windowFigure 1.B. distachyon plant scanned at the fourth leaf stage, with the root and shoot phenotypes studied indicated. Supplemental Table S1.
PhenotypeAbbreviationUnitRange of Variation
All Experiments (79 Lines and 582 Plants)Experiment 6 (36 Lines)
Whole plant
TDWTDWMilligrams88.6–773.8 (×8.7)285.6–438 (×1.5)
Shoot
SDWSDWMilligrams56.4–442.5 (×7.8)78.2–442.5 (×5.7)
 No. of tillersTillerNCount2.8–20.3 (×7.4)10–20.3 (×2)
Total root system
TRLTRLCentimeters1,050–10,770 (×10.3)2,090–5,140 (×2.5)
RDWRDWMilligrams28.9–312.17 (×10.8)62.2–179.1 (×2.9)
RootpcRootpcPercentage (of TDW)20.5–60.6 (×3)20.5–44.3 (×2.2)
R/SR/SUnitless ratio0.26–1.54 (×6)0.26–0.80 (×3.1)
PSRs
 Length (including branch roots)PSRLCentimeters549.1–4,024.6 (×7.3)716–2,984 (×4.2)
PSRpcPSRpcPercentage (of TRL)14.9–94.1 (×6.3)31.3–72.3 (×2.3)
 No. of axile rootsPSRcountCount11
 Length of axile rootPSRsumCentimeters17.45–52 (×3)17.45–30.3 (×1.7)
 Branch rootsPSRbranchCentimeters · (centimeters of axile root)−119.9–109.3 (×5.5)29.3–104.3 (×3.6)
CNRs
 Length (including branch roots)CNRLCentimeters0–3,856.70–2,266.5
CNRpcCNRpcPercentage (of TRL)0–57.10–49.8
 No. of axile rootsCNRcountCount0–20–2
 Cumulated length of axile rootsCNRsumCentimeters0–113.90–47.87
 Branch rootsCNRbranchCentimeters · (centimeters of axile root)−10–77.80–77.8
LNRs
 Length (including branch roots)LNRLCentimeters99.5–5,806.5 (×58.5)216.1–2,532.4 (×11.7)
LNRpcLNRpcPercentage (of TRL)4.2–72.7 (×17.5)6–64.8 (×10.9)
LNRcountLNRcountCount2–22.2 (×11.1)3.3–15.3 (×4.6)
LNRsumLNRsumCentimeters25.9–485.548–232 (×4.8)
 Branch rootsLNRbranchCentimeters · (centimeters of axile root)−12.1–25.4 (×12.1)3.2–15.9 (×5)
Open in a separate windowThe third reason for dissecting the different root types in this study was that they seem to have independent genetic regulation through major genes. Genes affecting specifically nodal root growth have been identified in maize (Hetz et al., 1996; Hochholdinger and Feix, 1998) and rice (Inukai et al., 2001, 2005; Liu et al., 2005, 2009; Zhao et al., 2009; Coudert et al., 2010; Gamuyao et al., 2012). Here, we also dissect branch (lateral) development on the seminal or nodal roots. Genes specific to branch roots have been identified in Arabidopsis (Casimiro et al., 2003; Péret et al., 2009a), rice (Hao and Ichii, 1999; Wang et al., 2006; Zheng et al., 2013), and maize (Hochholdinger and Feix, 1998; Hochholdinger et al., 2001; Woll et al., 2005).This study explored the hypothesis that adult root systems of B. distachyon contain genotypic variation that can be exploited through phenotyping and genotyping to increase cereal yields. A selection of 79 wild lines of B. distachyon from various parts of the Middle East (Fig. 2 shows the geographic origins of the lines) was phenotyped. They were selected for maximum genotypic diversity from 187 diploid lines analyzed with 43 simple sequence repeat markers (Vogel et al., 2009). We phenotyped shoots and mature root systems concurrently because B. distachyon is small enough to complete its life cycle in relatively small pots of soil with minimal influence of pot size compared with crops, such as wheat. We further phenotyped a subset of this population under irrigation (well watered) and drought to assess genotype response to water supply. By conducting whole-plant studies, we aimed to identify phenotypes that described partitioning among shoot and root components and within seed-borne and stem-borne roots. Phenotypes that have the potential to be beneficial to shoot and root components may speed up genetic gain in future.Open in a separate windowFigure 2.B. distachyon lines phenotyped in this study and their geographical origin. Capital letters in parentheses indicate the country of origin: Turkey (T), Spain (S), and Iraq (I; Vogel et al., 2009). a, Adi3, Adi7, Adi10, Adi12, Adi13, and Adi15; b, Bd21 and Bd21-3 are the reference lines of this study. Bd21 was the first sequenced line (Vogel et al., 2010) and root system (described in detail in Watt et al., 2009), and Bd21-3 is the most easily transformed line (Vogel and Hill, 2008) and parent of a T-DNA mutant population (Bragg et al., 2012); c, Gaz1, Gaz4, and Gaz7; d, Kah1, Kah2, and Kah3. e, Koz1, Koz3, and Koz5; f, Tek1 and Tek6; g, exact GPS coordinates are unknown for lines Men2 (S), Mur2 (S), Bd2.3 (I), Bd3-1 (I), and Abr1 (T).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号