Phosphatidylinositol 3 kinase–Akt signaling serves as a circadian output in the retina |
| |
Authors: | Michael L. Ko Kuihuan Jian Liheng Shi Gladys Y.-P. Ko |
| |
Affiliation: | Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA |
| |
Abstract: | The daily rhythm of L-type voltage-gated calcium channels (L-VGCCs) is part of the cellular mechanism underlying the circadian regulation of retina physiology and function. However, it is not completely understood how the circadian clock regulates L-VGCC current amplitudes without affecting channel gating properties. The phosphatidylinositol 3 kinase–protein kinase B (PI3K–Akt) signaling pathway has been implicated in many vital cellular functions especially in trophic factor-induced ion channel trafficking and membrane insertion. Here, we report that PI3K–Akt signaling participates in the circadian phase-dependent modulation of L-VGCCs. We found that there was a circadian regulation of Akt phosphorylation on Thr308 that peaked at night. Inhibition of PI3K or Akt significantly decreased L-VGCC current amplitudes and the expression of membrane-bound L-VGCCα1D subunit only at night but not during the subjective day. Photoreceptors transfected with a dominant negative Ras had significantly less expression of phosphorylated Akt and L-VGCCα1D subunit compared with non-transfected photoreceptors. Interestingly, both PI3K–Akt and extracellular signal-related kinase were downstream of Ras, and they appeared to be parallel and equally important pathways to regulate L-VGCC rhythms. Inhibition of either pathway abolished the L-VGCC rhythm indicating that there were multiple mechanisms involved in the circadian regulation of L-VGCC rhythms in retina photoreceptors. |
| |
Keywords: | circadian L-type voltage-gated calcium channel photoreceptor protein trafficking signal transduction |
|
|