首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Detecting gradients of asymmetry in site-specific substitutions in mitochondrial genomes
Authors:Krishnan Neeraja M  Seligmann Hervè  Raina Sameer Z  Pollock David D
Institution:Biological Computation and Visualization Center, Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
Abstract:During mitochondrial replication, spontaneous mutations occur and accumulate asymmetrically during the time spent single stranded by the heavy strand (DssH). The predominant mutations appear to be deaminations from adenine to hypoxanthine (A --> H, which leads to an A --> G substitution) and cytosine to thymine (C --> T). Previous findings indicated that C --> T substitutions accumulate rapidly and then saturate at high DssH, suggesting protection or repair, whereas A --> G accumulates linearly with DssH. We describe here the implementation of a simple hidden Markov model (HMM) of among-site rate correlations to provide an almost continuous profile of the asymmetry in substitution response for any particular substitution type. We implement this model using a phylogeny-based Bayesian Markov chain Monte Carlo (MCMC) approach. We compare and contrast the relative asymmetries in all 12 possible substitution types, and find that the observed transition substitution responses determined using our new method agree quite well with previous predictions of a saturating curve for C --> T transition substitutions and a linear accumulation of A --> G transitions. The patterns seen in transversion substitutions show much lower among-site variation, and are nonlinear and more complex than those seen in transitions. We also find that, after accounting for the principal linear effect, some of the residual variation in A --> G/G --> A response ratios is explained by the average predicted nucleic acid secondary structure propensity at a site, possibly due to protection from mutation when secondary structure forms.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号