首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Relationship between exogenous fuel availability and performance by teleost and elasmobranch hearts
Authors:William R Driedzic  Tom Hart
Institution:(1) Mount Desert Island Biological Laboratory, 046762 Salsbury Cove, Maine, USA;(2) Biology Department, Mount Allison University, EOA 3CO Sackville, New Brunswick, Canada
Abstract:Summary Performance by perfused isolated hearts of sea raven (Hemitripterus americanus) and skate (Raja erinecea), representatives of teleost and elasmobranch fishes, respectively, was monitored over a 30 min period under conditions of variable metabolic fuel availability. In both preparations initial cardiac output and hence fuel delivery to the myocardia were comparable to in vivo levels. Pressure development and hence overall work rate of the sea raven heart was also similar to in vivo levels.Fuel deprived sea raven hearts entered into a modest but significant contractile failure which could be prevented by the inclusion of 10 mM glucose or 1.0 mM palmitate in the perfusion medium. Addition of the glycolytic inhibitor iodoacetate to the medium resulted in rapid heart failure. Performance in the presence of iodoacetate could be improved by the inclusion of palmitate, lactate, or acetoacetate in the perfusion media but only high physiological levels of palmitate could completely alleviate the effect of iodoacetate.The inclusion of 1.0 mM palmitate in the perfusion medium of skate hearts resulted in a significant decrease in performance relative to fuel deprived hearts. Addition of iodoacetate to the medium resulted in rapid contractile failure. Hearts perfused with medium containing both iodoacetate and acetoacetate performed as well as fuel deprived hearts, indicating that this ketone body is an effective metabolic fuel.The performance data reported here are consistent with a previously established biochemical framework. The teleost heart has the capability of utilizing exogenous fatty acid as a metabolic fuel and this substrate may be able to support the contractile process independently. In contrast, fatty acid metabolism in the elasmobranch heart is poorly developed and appears to be more dependent upon the catabolism of blood borne ketone bodies.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号