首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mammalian glycinamide ribonucleotide transformylase. Kinetic mechanism and associated de novo purine biosynthetic activities
Authors:C A Caperelli
Institution:Division of Pharmacology and Medicinal Chemistry, University of Cincinnati Medical Center, Ohio 45267-0004.
Abstract:Glycinamide ribonucleotide transformylase catalyzes the conversion of glycinamide ribonucleotide and 10-formyltetrahydrofolate to formylglycinamide ribonucleotide and tetrahydrofolate. The enzyme purified from the murine lymphoma cell line L5178Y also catalyzes two other de novo purine biosynthetic activities, glycinamide ribonucleotide synthetase and aminoimidazole ribonucleotide synthetase. The transformylase reaction shows a 1:1 stoichiometry for substrate utilization and an optimum rate between pH 7.9 and 8.3. Initial velocity and dead-end inhibition patterns indicate that the kinetic mechanism of the transformylation reaction is ordered-sequential, with 10-formyltetrahydrofolate binding first. alpha, beta-Hydroxyacetamide ribonucleotide (alpha, beta-N-(hydroxyacetyl)-D-ribofuranosylamine) is shown to be an inhibitor of the transformylase, competitive against glycinamide ribonucleotide.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号