首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Monolayer adsorption of a "bald" mutant of the highly adhesive and hydrophobic bacterium Acinetobacter sp. strain Tol 5 to a hydrocarbon surface
Authors:Hori Katsutoshi  Watanabe Hisami  Ishii Shun'ichi  Tanji Yasunori  Unno Hajime
Institution:Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan. hori.katsutoshi@nitech.ac.jp.
Abstract:The affinity of microbial cells for hydrophobic interfaces is important because it directly affects the efficiency of various bioprocesses, including green biotechnologies. The toluene-degrading bacterium Acinetobacter sp. strain Tol 5 has filamentous appendages and a hydrophobic cell surface, shows high adhesiveness to solid surfaces, and self-agglutinates. A "bald" mutant of this bacterium, strain T1, lacks the filamentous appendages and has decreased adhesiveness but retains a hydrophobic cell surface. We investigated the interaction between T1 cells and an organic solvent dispersed in an aqueous matrix. During a microbial-adhesion-to-hydrocarbon (MATH) test, which is frequently used to measure cell surface hydrophobicity, T1 cells adhered to hexadecane droplet surfaces in a monolayer, whereas wild-type cells aggregated on the droplet surfaces. The adsorbed T1 cells on the hexadecane surfaces hindered the coalescence of the droplets formed by vortexing, stabilizing the emulsion phase. Following the replacement of the aqueous phase with fresh pure water after the MATH test, a proportion of the T1 cells that had adsorbed to the hydrocarbon surface detached during further vortexing, suggesting a reversible adsorption of T1 cells. The final ratio of the adhering cells to the total cells in the detachment test coincided with that in the MATH test. The adhesion of T1 cells to the hydrocarbon surface conformed to the Langmuir adsorption isotherm, which describes reversible monolayer adsorption. Reversible monolayer adsorption should be useful for green technologies employing two-liquid-phase partitioning systems and for bioremediation because it allows effective reaction and transport of hydrophobic substrates at oil-water interfaces.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号