首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of temperature and water activity on spore germination and mycelial growth of three fungal biocontrol agents against water hyacinth (Eichhornia crassipes)
Authors:Dagno K  Lahlali R  Diourté M  Jijakli M H
Affiliation:Unité de Phytopathologie, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium.
Abstract:Aims: To determine the effect of water activity (aw = 0·880–0·960) and temperature (15–35°C) on the percentage of viable conidia and mycelial growth of three biocontrol agents effective against water hyacinth in Mali: Alternaria sp. isolate Mlb684, Fusarium sacchari isolate Mln799 and Cadophora malorum isolate Mln715. Methods and Results: The fungi were grown in vitro on plates containing potato dextrose agar medium at different aw values (glycerol being added to adjust the aw). The percentage of viable conidia and radial growth rate decreased with decreasing water activity. Statistical analysis showed a significant effect of aw, temperature and the aw × temperature interaction on mycelial growth (P < 0·0001). Water activity emerged as the factor exerting the greatest influence. Differences were observed between the fungi tested, the C. malorum appearing more tolerant to low aw and the F. sacchari more tolerant to high temperature (35°C). Growth models predicting the combined effect of aw and temperature were developed and response surfaces generated, showing fairly good agreement with the experimental values. Conclusions: Our results confirm the previous finding that aw has a greater influence than temperature on fungal growth. Under most conditions, variation of environmental factors has a detrimental influence on the percentage of viable conidia and mycelial growth rate of fungal isolates. Significance and Impact of the Study: The developed models may contribute to predicting the best environmental conditions for use of these fungi as effective biocontrol agents against water hyacinth.
Keywords:biocontrol agents  growth rate  percentage of viable conidia  predictive models  temperature  water activity
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号